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Preface, WorldMath - English 

Mathematics is our most accurate science. 

Mathematics is a beautiful science. 

Some study mathematics alone, but most people use it as a tool for 

physics, biology, medicine, engineering science, economy, ……, 

for everything. 

For high school and more. We start with the four basic 

arithmetic operations, and finish in the first or second semester of 

the study for bachelor or candidate.  

The language is clear, understanding is in focus, technical terms 

are explained. 

There is also an exercise book with problems and proposed 

solutions.  

The book is independent of which formula collection is used. 

The book is also independent of using a calculator or a calculation 

program.  

And one more thing. Mathematics is not becoming more and more 

complicated as we go along. That is my personal experience, and I 

see it with the students too. The next step is not harder.  

 

Author: Tom Pedersen, Mechanical-Processing Engineer, Ph.D. from Brunel 

University. I have been employed in business as a project leader and 

consultant, - as a researcher, and as a lecturer at technical colleges in Elsinore 

and Copenhagen as well as at the Danish Technical University, where I am 

currently employed. I have given lectures within several subjects including a 

lot of mathematics. I have been a lecturer within all the subjects presented in 

this book…….Enjoy! 
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Tom Pedersen, January 2024.  
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Part 1. Basics 

Number system 

We use the decimal system (10s system). Probably because we have 

10 fingers. We state, that our number system has the base number 

10. 

In ancient times the Greeks also used a 10s system, and they were 

able to calculate, but their number characters were different and 

unfortunately they had no character for zero. This made their 

system difficult and it was only mastered by few.  

The Romans also used a 10s system and still they had no character 

for zero. Their characters consisted of letters (for example was 12 

written this way: XII). Roman numerals are still used for 

indicating the year of a statue or the like. They could not find 

practical methods of addition and subtraction, and it became even 

more complicated within multiplication and division.  

In the Middle Ages the 10s system was combined with Arab 

characters (originally from India), and a sign, 0, was added to 

describe nothing. Today the characters are: 0 1 2 3 4 5 6 7 8 9. 

And after using these ten characters we can write ten new 

numbers by putting 1 in front: 10, 11, 12, 13, 14, 15, 16, 17, 18, 

19, - then 2 in front: 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 - , etc. 

When we reach 99 we start again using the same characters with 1 

in front and two characters after: 100, 101, 102, etc. So, we only 

use ten characters and their position decide if we have ones, tens, 

hundreds, thousands, etc. Now we are getting somewhere, and 

today we have fine tools for addition, subtraction, multiplication, 

and division (The four basic arithmetic operations). 
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If you will practice the logic in our number system, I suggest to 

watch a measuring tape. It is also suitable for practicing the four 

basic arithmetic operations. 

---------- 

Numbers can be positive, for instance  +5  where we can omit the 

sign  +  and just write  5. It cannot be misunderstood. 

Numbers can also be negative, for instance  -5  where we cannot 

omit the sign: -  

If we only want the magnitude of a number we place the number 

between two straight parenthesis: 

ǀ5ǀ  =  5 ǀ-5ǀ  =  5 ǀ-8ǀ  =  8   

We call it the numerical value of that number. 

numerical value  =  magnitude of the number 

---------- 

Also, let us briefly describe the number system from ancient 

Mesopotamia. It is still in use although we don´t think about it. 

They had two significant numbers: 6 and 60. It is not clear why 

they chose the significant number 6, but they probably thought 

that it was too small so they multiplied by 10 (probably due to the 

ten fingers) and had the base number: 60. 

At equinox they stated 6 hours from sunrise till noon and 6 hours 

from noon till sunset. The night is equally long giving us 24 hours. 

An hour is coarse so we divide it with their base number, 60, and 

get one minute. If we want it finer, we divide by 60 a second time 

and get one second. In modern times we have divided even more, 

but this time we use the 10s system! Then we have a tenth, a 

hundredth, etc. of a second. 
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In mathematics angles are measured in angle degrees stating one 

round to be 360°. 360 is found by multiplying the two significant 

numbers: 6 · 60 = 360.  

---------- 

Arithmetic is Ancient Greek and means the doctrine of numbers. 
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The four basic arithmetic operations  

The four basic arithmetic operations and their calculation symbols 

are  

1. to add, plus  + 

2. to subtract, minus  - 

3. to multiply, dot  · 

4. to divide, two dots  :    or a fraction line  ─ 

 

1. Sum 

We add by placing the numbers above one another. Ones above 

ones, tens above tens, hundreds above hundreds, and so on. 

 

First the ones:  7 + 4 gives 11, then at the result bottom line we 

write the ones, here 1, and the tens are written above the other 

tens. 

then the tens:  1 of before + 1 + 1 gives 3 and is written in the 

result. 

and then the hundreds:  1 + 0 (there is nothing in front of the 

figures 1 and 4) gives 1 which is written in the result. 

answer:  131 
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2. Difference 

We withdraw by placing the numbers above one another. Ones 

above ones, tens above tens, hundreds above hundreds, and so on. 

 

First the ones:  4 - 7 which we cannot, so we borrow ten and write 

it uppermost. These 10 + 4 gives 14. Now we can say 14 - 7 which 

gives 7, and write it in the result. 

then the tens:  Uppermost of the tens was 1, but we borrowed it, so 

now it is 0. 0 - 1 cannot be done so we borrow ten from the 

hundreds and write it uppermost. It becomes 10 because 100 is ten 

times bigger than 10. The borrowed 10 - 1 gives 9, and we write it 

in the result.  

And finally the hundreds which used to have the figure 1, but 

since we borrowed it, we now have 0. 17 does not have any 

hundreds, so it renders 0 - 0  =  0  which is not written. 

answer:  97 

 

2a. 

What happens if we want to withdraw a big number from a small 

number?  

It can be done, though we do not have a technique for it. So we 

flip the numbers and find the big number minus the small number. 

Then we flip the numbers back again and put a minus in front of 

the result: 
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answer:  -97 

Negative numbers also exist. No problem. For example may  -97 

mean there is a deficit of 97. 

The curved arrow is a way to show that something is changed, it 

means: transferred to. 

 

3. Product  

We multiply two numbers by placing them next to one another 

with a dot symbol in between.  

First we multiply the ones of the first number with the ones of the 

second number, then ones with tens, ones with hundreds, etc.  

Then we multiply the tens of the first number with the ones of the 

second number, then tens with tens, tens with hundreds, etc. 

And so on…. 

 

2 · 1 gives 2 which is written at the ”ones place” below the line.   

2 · 4 gives 8 which is written at the ”tens place” below the line.    

2 · 7 gives 14 - where 4 is written at the “hundreds place” and 1 at 

the “thousands place” below the line. 
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Now the tens in the first number:  Since we are multiplying by a 

tens, we start by writing 0 at the ones place below 1482. Then we 

multiply:  3 · 1 gives 3 which is written at the tens place. 3 · 4 

gives 12, we write 2 and save 1 as a small figure above the figure 

of 7. 3 · 7 gives 21, and we remember to add 1 giving 22, which 

we just write because there is no more to multiply with. Finally, 

we add 1482 and 22230 to render 23712. 

 

3a. 

If one of the numbers is a decimal point, we multiply as if nothing 

has happened, and put a comma/dot in the result in the same 

position as the number we started with: 

 

If both numbers are decimal points, we multiply as if nothing has 

happened and put a comma/point in the result in the position for 

the first number + the position for the second number we began 

with: 

 

Here we have  1 + 2  =  3  figures after the comma/point. 
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4. Division  

If we are to divide 84 by 7, we write: 

84:7   in order to keep the height in a body text. 

Or better: 

 
84

7
  as we prefer it in mathematics. 

For calculation we arrange it like this: 

 

and we have: 8 divided by 7 gives 1, which is written above. 8-7 

gives 1, which is written below and renders a surplus of 1 tens. 

Now we drag the figure 4 to stand next to the figure 1 so it 

becomes 14. 14 divided by 7 gives 2, which is written above. 7·2 

is 14. 14 minus 14 is zero, so it adds up, and the answer is 12. 

 

4a. 

Some times the answer is not a whole number: 
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15 divided by 12 gives 1, which is written above. 1·12 gives 12. 

15-12 gives 3. So - we have a surplus of 3 and no more figures.  

Now we expand 15 to become 15,0000 (with as many zeros as 

needed). Thus we can put a comma/point to the answer and drag 0 

to stand next to the figure 3. Then 30 divided by 12 gives 2, which 

is written above in the result. 2·12 gives 24. 30-24 is 6. The next 0 

is dragged and we have 60. 60 divided by 12 gives 5, which is 

written in the result. 5·12 gives 60. 60-60 is 0, and we are done. 

The answer is  1,25. 

 

4b. 

And when dividing a small number by a big number: 

 

9 divided by 12 can be done 0 times, which is written in the result. 

Then we expand 9 to become 9.000. We put a comma/point in the 

result and continue.  
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The answer is  0.75. 

 

4.c 

And when it does not add up 

 

the answer can never be precise. We have to choose how many 

figures after the comma/point are needed. A decimal is the 

technical term for a figure after the comma/point. Decimal means 

“a tenth number”. The answer is written  1.4166… the dots show 

that it continues. 

If we want a precise number, we shall not carry out the division 

calculation at all. We just have to leave the fraction unchanged: 

  
17

12
  that is precise. 
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4d. 

If we divide a decimal number by a whole number, we put a 

comma/point in the result when we drag the first decimal 

 

Here the calculation adds up since we end with 0. So, the answer 

is a precise decimal number:  21.5575 

 

Theory 

Finally a few practical remarks: 

We can always divide by 1. For instance we can write 3 as a 

fraction:  
3

1
   which surely equals 3. 

We can also always multiply by 1. For instance we can write 3 as  

3·1  which surely equals 3.  
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Fractions (quotients) 

1

2
  means 1 divided by 2 or 1 out of 2 or 1 in proportion with 2. 1 

is in the numerator and 2 is in the denominator. The line in 

between is called the fraction line.  

If we are to share a cake equally we get  
1

2
  each or we get 1 out of  

2 pieces each or we get 1 piece in proportion with 2 pieces. 

We may multiply the numerator and the denominator with the 

same number or letter or other - except 0. We may not multiply by 

something different since we still need to keep the proportion 

between numerator and denominator. In this example the 

denominator must stay twice as big as the numerator.  

If we multiply by 3, we get:  
1

2
  =  

1 · 3

2 · 3
  =  

3

6
  

If we multiply by -3, we get:  
1

2
  =  

1 ·(−3)

2 ·(−3)
  = 

−3

−6
    

If we multiply by a we get:  
1

2
  =  

1 · a

2 · a
  = 

1a

2a
  

If we multiply by (0,1·2 - 7) we get   

 
1

2
  =  

1 ·(0.1 ·2 − 7)

2 ·(0.1 ·2 − 7)
  =  

1(0.1 ·2 − 7)

2(0.1 ·2 − 7)
  

In these four examples, we have extended the fraction. 

We may also divide the numerator and the denominator with the 

same number or letter or other - except 0. 

If we divide  
3

6
  by 3 in numerator and denominator we get  

1

2
  , and 

we are back.  



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       21 
 

If we divide  
1(0.1 ·2 − 7)

2(0.1 ·2 − 7)
  by (0,1·2 - 7) in numerator and 

denominator we get  
1

2
  , and we are back.  

We have shortened the fraction. 

---------- 

When multiplying a number (or other) by a fraction, we multiply 

number and numerator. For instance 

5 ·  
1

2
  =  

5

2
     or    a · 

3

6
  =  

3𝑎

6
       

or    (0.1·2 - 7) · 
3

6
  =  

3 (0.1·2 − 7)

6
    

---------- 

When multiplying a fraction by a fraction, we multiply numerator 

by numerator and denominator by denominator. For instance 

3

6
  ·  

5

2
   =  

15

12
     or     

3

6
  ·  

−5

2
   =  

−15

12
  

or     
3

6
  ·  

5(0.1·2 − 7)

2
  =  

3·5·(0.1·2 − 7)

6·2
  =  

15(0.1·2 − 7)

12
   

---------- 

It is a little harder to divide a fraction by a fraction. For instance  
1

2
   divided by   

1

4
  

  

1

2
1

4

    here it is important to write it in a way that clearly shows 

what is to be divided by what. It must not be misunderstood, so 

we write 

 
    

1

2
    

 
1

4
 

   now we can clearly see, that  
1

2
  is to be divided by  

1

4
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And now it becomes a bit more difficult. We can see that  
1

2
  is 

twice as big as  
1

4
  so the answer has to be 2. Therefore, the rule 

says that we divide a fraction by a fraction - by instead 

multiplying one fraction by the inverse of the other fraction. The 

inverse of  
1

4
  is  

4

1
  so 

    
1

2
    

 
1

4
 

   =  
1

2
 · 

4

1
  =  

4

2
  =  2 

We can also see it this way: 

We multiply both numerator and denominator by 4 and get 

    
1

2
    

 
1

4
 

   =  
    

4

2
    

 
4

4
 

   =   
2

1
  =  2 

---------- 

And the same rule applies if the numerator is not a fraction   

(0.1·2 − 7)
1

4
  

  =  4(0.1·2 - 7)  

or    
318.27

1

4
  

  =  4 · 318.27 

 

Examples  

1.  

The purpose of shortening a fraction usually is simplification 

    
1

2
 · 6   

 
1

4
  ·  8

    may be shortened as   
3

2
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 ( − 
1

2
 ) · 6   

 
1

4
  ·  8

   may be shortened as  
  −3   

 2
  =  - 

 3

 2
   

It does not matter if minus is before the whole numerator or before 

the whole fraction. 

 

2.  

The purpose of extending a fraction usually is the wish for a 

certain denominator for further calculation, in particular if we are 

adding fractions 

1

2
  +  

1

3
   here we need to find a common denominator. One can 

always find a common denominator by multiplying the two 

denominators, here:   2 · 3 = 6  , so we change both fractions into 

sixth - which we shorten afterwards 

1

2
  +  

1

3
  =  

1 · 3

2 · 3
  +  

1 ·  2

3 · 2
  =  

5

6
   

 

3. And a mix 

  (− 
1

2
 ) · 6  

 
1

4
  ·  8

  +  
1

3
  =  

  3(− 
1

2
 )· 6   

3( 
1

4
  ·  8)

  +  
1( 

1

4
  ·  8)

3( 
1

4
  ·  8)

   

where the common denominator is found by multiplying the two 

denominators. Then we can make a common fraction 

  3(− 
1

2
 )·6 +1( 

1

4
  ·  8)   

3( 
1

4
  ·  8)

  =  
  (− 9) + ( 2)   

( 6)
  =  

 −7   

6
 

In this calculation, we multiplied an entity within a parenthesis by a number. 

We will look more into this in a following chapter. 
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Percent 

Percent means ”out of a hundred”, which means a fraction with 

100 as the denominator. 

1

2
  means 1 out of 2. If we multiply by 50 in the numerator and 

denominator we get  
50

100
   or 50 out of 100  or  50%. In brief: 

50

100
  =  50% 

 

Examples 

1

5
  =  

20 · 1

20 · 5
  =  

20

100
  =  20% 

1

8
  =  

12,5 · 1

12,5 · 8
  =  

12,5

100
  =  12,5% 

1

4
  =  

25

100
  =  25% 

and as a decimal number 

1

2
  =  

50 · 1

50 · 2
  =  

50

100
  =  50%  =  0,5 

1

4
  =  

25 · 1

25 · 4
  =  

25

100
  =  25%  =  0,25 

3

4
  =  

25 · 3

25 · 4
  =  

75

100
  =  75%  =  0,75 

3

8
  =  

12,5 · 3

12,5 · 8
  =  

37,5

100
  =  37,5%  =  0,375 

Percent is out of a hundred. A decimal number is out of one.  

1 is one whole. 100% is also one whole. 

1 =  
100

100
  = 100% 
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2. 

Yesterday a certain dress cost 200 pounds. Today it has risen to 

225 pounds. What is the rise in %? 

200 pounds corresponds with 100%.  

The rise is 225 - 200 = 25 pounds, which must be seen in 

proportion with the 200 pounds: 

 
25

200
  =  0.125  =  12.5% which is the answer 

 

3. 

Yesterday a certain dress cost 200 pounds. Today the price has 

dropped to 175 pounds. What is the price reduction in %?  

200 pounds corresponds with 100%.   

The reduction is 200 - 175 = 25 pounds, which must be seen in 

proportion with the 200 pounds: 

25

200
  =  0.125  =  12.5%  which is the answer 

The information could be given as:  Today -12.5% for this dress. 

 

4. 

The price for a certain machine is 1000 pounds without VAT. 

1000 pounds corresponds to 100%. Inclusive of 25% VAT the price is:   

1.25 · 1000  =  1250 pounds  which is the answer 

or 

100% + 25%  =  1000 + 0.25·1000  =  1250 pounds 
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5. 

Another machine costs 1000 pounds with VAT. 

1000 pounds now corresponds to 125%. Exclusive of 25% VAT 

the price is: 

 
1000

1.25
  =  800 pounds   which is the answer 

We can confirm by saying  

100% + 25%  =  800 + 0.25·800  =  1000 pounds 

 

6. 

What is the percentage of 347 out of 376? 

347

376
  =  ca. 0.9229  =  ca. 92.3% 

 

Percentage point 

If we have woven 20% of a whole blanket in March and 25% of 

the whole blanket in April we have increased by 5 percentage 

point (5% point). 

Or: change  =  end - start  =  25% - 20%  =  5% point 

Or: 
25

100
 - 

20

100
  =  

5

100
  =  5% point 

Thus percentage point expresses the change/the difference/the 

increase or decrease.  

+5% point is an increase/growth. 

-5% point is a decrease/drop. 
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Calculation with letters (algebra) 

If we do not know the number of something, we call it an 

unknown quantity and write a letter instead. That is algebra.  

All rules of calculation are the same. That goes for the four basic 

arithmetic operations as well as for other types of calculation, 

which we will meet later.  

The technical term, algebra, is from Latin.   

Many technical terms are from Latin or ancient Greek and serves 

as a common language in most science regardless of which 

language we use otherwise. Also, many technical terms are in 

English which is understood and spoken by many. 

For unknown quantities we use small letters (a, b, c, etc.) and 

capital letters (D, E, F, etc.) of our alphabet. But often, that is not 

enough, so we also use small (α, β, γ, etc.) and capital (Δ, Θ, Σ, 

etc.) letters from ancient Greek. It may be the name of a line, an 

angle or other.  

We may also use letters as abbreviations. We will see that later. 

 

Examples 

1. 

a + a = 2a  α + 2α = 3α - α + 2α = α 

2 · a = 2a  a · b = ab  a·b·c = abc 

We may omit the multiplication dot if it cannot be misunderstood. 

We like to do things briefly. 
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2.   

A + B   

cannot be reduced since A may be the number of apples and B the 

number of pears. That cannot be changed so the answer still is   

A + B 

and 

B - c = B - c  
𝑎

𝑏
  =  

𝑎

𝑏
    - 

3𝑎

2𝑏
  = - 

3𝑎

2𝑏
   

and so on. 

 

3.  

 - 
3𝑎

4𝑏
 + 

3𝑎−𝑐+2·𝑎

2𝑏
  =  - 

3𝑎

4𝑏
 + 

5𝑎−𝑐

2𝑏
  =  - 

3𝑎

4𝑏
 + 

2·(5𝑎−𝑐)

2 ·2𝑏
   =  

−3𝑎+10𝑎−2𝑐

4𝑏
    

= 
7𝑎−2𝑐

4𝑏
     which cannot be simplified. 

 

4. 

    
1

2
 · 6 · 𝑎   

 
1

4
  ·  8𝑎

  =  
    3 · 𝑎   

 2 ·  𝑎
  =  

3

2
   

 

5. 

 ( − 
1

2
 ) · 6 · 𝑎   

 
1

4
  ·  8𝑏

  =  
  −3𝑎   

 2𝑏
  =  - 

3𝑎

2𝑏
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6. 

4𝑥−8𝑦

2
     

may be split into two fractions where both  4x  and  -8y  must be 

divided by 2: 

4𝑥−8𝑦

2
  =  

4𝑥

2
  -  

8𝑦

2
  =  2x - 4y 

 

7. 

3x - 3y + 
4𝑥−8𝑦

4
     

The fraction bothers since we would like to have x alone and y 

alone. We split the fraction in two  

3x - 3y  +  
4𝑥

4
  -  

8𝑦

4
   

the minus before 8y is moved to the front of the fraction. We can 

do that since there is nothing else in the numerator than just 8y.  

3x  -  3y  +  x  -  2y  =  4x  -  5y 

x alone and y alone. Further reduction is not possible. 
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Parenthesis  

We put a parenthesis around something we want to see as one, - 

one number, - one entity. 

Examples 

1. 

4(x + y)   here  (x + y)  as one is to be multiplied by 4. 

2. 

(x + y) + 4   here  (x + y)  as one is added to 4. 

3. 

4 - (x + y)   here  (x + y)  as one is subtracted from 4. 

4. 

    4   

 (x+y)
    

here 4 is divided by  (x + y). (x + y) cannot be separated. 

5. 

 (x+y) 

 4
    

Here  (x + y)  is to be divided by 4 and may be split, so that x is 

divided by 4 separately - and y is divided by 4 separately. Thus, 

two fractions 

 x

 4
  +  

 y

 4
    

---------- 

If we want to lift a parenthesis, we have to make sure that the 

meaning is unchanged and that you can calculate backwards to 

obtain the expression you started with.  
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6. 

4(x + y)  =  4x + 4y    4 is multiplied into the parenthesis by 

multiplying x and y separately. 

If we calculate backwards from right to left, we put 4 outside the 

parenthesis.  

7. 

(x + y) + 4    here we have an invisible + before the parenthesis. 

Mathematicians almost always write things in short, so  (x + y)  is 

understood as  +(x + y). A plus parenthesis may be lifted with no 

further change 

(x + y) + 4  =  x + y + 4 

We may also calculate from right to left by putting any 

parenthesis we want to. 

8. 

If the entity within the parenthesis is negative, we write  -(x + y). 

So, when we lift the parenthesis both x and y are negative 

4 - (x + y)  =  4 - x - y 

If we calculate from right to left we put  -1  outside the 

parenthesis. Again, we want to be brief and just write  -  before the 

parenthesis. It cannot be misunderstood.  

-1·(x + y)  =  -1(x + y)  =  -(x + y) 

9. 

    4   

 (x+y)
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here 4 is divided by  (x + y).  (x + y) cannot be separated. The 

parenthesis may be removed, it changes nothing, 4 is still to be 

divided by the sum  x+y 

4

(𝑥+𝑦)
   =   

4

𝑥+𝑦
     

 

10. 

 (x+y) 

 4
    

Here  (x + y)  is to be divided by 4 and may be split, so that x is 

divided by 4 separately - and y is divided by 4 separately. Thus, 

two fractions 

 x

 4
  +  

 y

 4
    at the same time, the parenthesis has been lifted 

and we may calculate backwards by making a common fraction.  

---------- 

CAS does not have the ability, like that of man, to distinguish 

between necessary or unnecessary parenthesis. Therefore, we may 

need to put more parentheses when we use CAS. 
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Square rules (Remarkable identities)  

First a few examples of how to multiply entities in parentheses: 

(2 + a)·(3 + 2a)  =  6 + 4a + 3a + 2aa  =  6 + 7a + 2aa 

we multiply 2 by 3, then 2 by 2a, a by 3, and finally a by 2a. 

Eventually we reduce. 

(2 + a)(3 + 2a + b)  =  6 + 4a + 2b + 3a + 2aa + ab 

The method is the same. First we multiply 2 by 3, by 2a, by b, 

then we multiply a by 3, by 2a, by b.   

And 

(2 - a)(3 - 2a - b)  =  6 - 4a - 2b - 3a + 2aa + ab      remember the sign 

Plus times plus gives plus 

Plus times minus gives minus 

Minus times plus gives minus 

Minus times minus gives plus. 

2aa can also be written this way:  2aa  = 2a2   we say ”two times - 

a to the power of two” 

or   b·b  =  bb  =  b2   b to the power of two (or: b squared) 

and now the square rules (remarkable identities): 

1.  (a + b)(a + b)  =  a2 + ab + ba + b2  =  a2 + b2 + 2ab  

2.  (a - b)(a - b)  =  a2 - ab - ba + b2  =  a2 + b2 - 2ab 

3.  (a + b)(a - b)  =  a2 - ab + ba - b2  =  a2 - b2  

In the first theorem  (a + b)  is squared and we write  (a + b)2. In 

the second theorem  (a - b)  is squared and we write  (a - b)2. In the 

third theorem the signs vary, so this is no square. 
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The brief version is 

1.  (a + b)2  =  a2 + b2 + 2ab  

2.  (a - b)2  =  a2 + b2 - 2ab 

3.  (a + b)(a - b)  =  a2 - b2  

These theorems are used a lot. 

 

Examples 

 4𝑎2− 9

 4𝑎2+9−12𝑎
  =  

 (2a+3)(2a−3)

(2𝑎−3)2
  =  

 2a+3

 2a−3
   

 
 3𝑏2+ 12−12𝑏

 5𝑏2−10𝑏
  =  

 3(𝑏2+ 4 −4𝑏)

 5𝑏2−10𝑏
    =  

 3(𝑏−2)2

5b(b−2)
  =  

 3(b−2)

 5b
   

and a long reduction: 

 3

 ab−𝑏2
 + 

 3

𝑎2+ab 
 - 

 6

𝑎2−𝑏2 
  =  

 3

 b(a−b)
 + 

 3

 a(a+b)
 - 

 6

 (a+b)(a−b)
  =              b put out, a put out, theorem 3 

 3(a+b)

 b(a+b)(a−b)
 + 

 3(a−b)

 a(a+b)(a−b)
 - 

6 

 (a+b)(a−b)
 =    prolonged, prolonged, nothing 

 
 3

 b
(a+b)

 (a+b)(a−b)
 + 

 
 3

 a
(a−b)

 (a+b)(a−b)
 - 

6 

 (a+b)(a−b)
  =       b moved, a moved, nothing 

 

 3a

 b
 + 3 + 3 − 

 3b 

 a
 − 6

(𝑎+𝑏)(𝑎−𝑏)
  =  

 3a

 b
  − 

 3b 

 a
 

(𝑎+𝑏)(𝑎−𝑏)
  =   

3𝑎2

 ab
  − 

 3𝑏2 

 ab
 

(𝑎+𝑏)(𝑎−𝑏)
 =   

 3𝑎2− 3𝑏2

 ab(𝑎2−𝑏2)
  =  

 3

 ab
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Square root 

If we have a number, for instance 4, we can find the positive 

number that gives 4 when squared. That is 2. We say that the 

square root of 4 is 2, and we write  √4  =  2 

And further: If we have a number, for instance 8, we can find the 

positive number that gives 8 when raised to the power of 3. That is 

2. We say that the third root of 8 is 2, and we write  

 √8
3

  =  2 

and the fourth root of 16 is 2 

√16
4

  =  2 

The square root and so forth may also be written in another way, 

as we shall see in the next chapter: “Exponentiation”. 

 

Examples 

1. 

√16 · 4  =  √64  =  8 

or 

√16  · √4  =  4 · 2  =  8 

so 

√16 · 4  =  √16  · √4   

 

2. 

 
 √16

 √4
  =  

4

2
  =  2 
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or 

√
16

4
  =  √4  =  2 

so 

 
 √16

 √4
  =  √

16

4
   

 

Or in letters 

3. 

√𝑎 · 𝑏  =  √𝑎  · √𝑏   

 

4. 

 √𝑎

 √𝑏
  =  √

𝑎

𝑏
   

 

5. 

 √16𝑎

 √25𝑏
  =  

 4√𝑎

 5√𝑏
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Exponentiation 

There is a shorter way of writing a times a 

a · a  =  aa  = a2  

a is the base number, 2 is called the exponent and a2 together is: a 

raised to the power of 2.  

More examples 

aaaaaaaaaaaaa  = a13   bbbb  =  b4  

or in numbers: 

7·7·7·7·7·7  =  76   9·9·9  =  93  

With letters we may omit the multiplication sign, it cannot be 

misunderstood. However, with figures we cannot omit the sign, 

because 999 means nine hundred and ninety nine.   

Especially important and widely used are the powers of 10: 

10·10·10  =  103  10·10·10·10  =  104  etc. 

There are three advantages of using exponentiation: They are well 

suited for very big and very small numbers, they are easier to 

calculate with (once one has got used to it), and they are almost 

indispensable in differential- and integral calculus as we will see 

later. 

If we have a fraction like  
 10·10·10

 1
  , -we can write  

103

1
  =  103 

Understood a + before 3. Thus  10+3  =  103 

If we have a fraction like   
 1

 10·10·10
  , -we can write  

1

103
  =  10-3 

Here the sign minus shows that 103 is located in the denominator.  
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+ before the exponent means location: numerator, and  - before the 

exponent means location: denominator. 

 

Now, instead of one thousand we can write 

1000  =  103 

and instead of one million we can write 

1 000 000  =  106 

Avogadro’s number (physics, chemistry) is approximately:  6·1023 

Planck’s constant (physics) is approximately:  6,63·10-34  

These numbers would be very tedious to write without the use of 

exponentiation. 

 

Examples 

1. 

102 · 103  =  10 · 10 · 10 · 10 · 10  =  105  

We could have calculated this by just adding the exponents 

102 · 103  =  105  

 

2. 

 1

102 ·103
  =  

1

105
  =  

10−5

1
  =  10-5 

We could have calculated this by adding the exponents in the 

denominator - and moving the power number to the numerator 

with a minus before the exponent. 
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3. 

104 ·10−2 · 105

102 ·103
  =  102  =  100 

Exponents in the numerator:  4-2+5 = 7 

Exponents in the denominator:  2+3 = 5  moved up  -5 

Calculation of the exponents:  7-5 = 2  that means 102 = 100. 

 

4. 

10½ · 10½  =  101  =  10  exponents   
1

2
 + 

1

2
 = 1  

but wow!  √10  ·  √10  =  10   also gives 10 

so  10½  =  √10   

We state that 10 elevated to ½ is the same as the square root of 10. 

So, instead of writing √10 , we might as well write 10½.  

As mentioned, this is often an advantage. 

 

5. 

And now the tricky one: 

100  =  1 

We can see from the exponents in the fraction that:   

101

101 
 = 101-1 =  100  =  1 

Exponent in the numerator: 1  

Exponent in the denominator: 1  moved up  -1 
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Calculation of the exponents:  1-1 = 0 

So, 100 must equal 1. 

 

6. 

(102)3  =  102  ·  102  ·  102  =  106  =  102·3 

 

7. 

(2 · 3)4  =  64  =  1296 

24 · 34  =  16 · 81  = 1296 

so 

(2 · 3)4  =  24 · 34   

 

8. 

(
2

3
)

4
  =  

2

3
 ·  

2

3
 ·  

2

3
 ·  

2

3
 =   

2 ·2 ·2 ·2

3 ·3 ·3 ·3
  =  

16

81
  

24 

34
  =  

16

81
  

so 

(
2

3
)

4
=  

24 

34
  

 

Or in letters: 

9. 

a2 · a3  =  a · a · a · a · a  =  a5  
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10. 

 1

𝑏2 ·𝑏3
  =  

1

𝑏5
  =  

𝑏−5

1
  =  b-5 

 

11. 

𝑥4 ·𝑥−3 · 𝑥5

𝑥2 ·𝑥3
  =  x1  =  x 

 

12. 

y½ · y½  =  y1  =  y 

 

13. 

a0  =  
𝑎1

𝑎1
   =  1 x0  =  

𝑥1

𝑥1
   =  1   17640  =  1 

Or the long way 

a0  =  a(1-1)  =  a1 · a-1  =  
𝑎1

𝑎1
   =  1  

Or for fun 

a0  =  a(2-2)  =  a2 · a-2  =  
𝑎2

𝑎2
   =  1  

a0  =  a(x-x)  =  ax · a-x  =  
𝑎𝑥

𝑎𝑥
   =  1 

 

14. 

(a2)3  =  a2  ·  a2  ·  a2  =  a6  =  a2·3 
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(ar)s  =  ar·s 

 

15. 

(a · b)4  =  a4 · b4  

(a · b)r  =  ar · br 

 

16. 

(
𝑎

𝑏
)

4
 =  

𝑎4 

𝑏4
  

(
𝑎

𝑏
)

𝑟
=  

𝑎𝑟 

𝑏𝑟
  

 

17. 

The third root of 8 as an exponentiation:  √8
3

  =  8
1

3  =  2 

which is seen from  8
1

3 · 8
1

3 · 8
1

3  =  81  =  8 

and the fourth root of 16: √16
4

  =  16
1

4  =  2 

which is seen from  16
1

4 · 16
1

4 · 16
1

4 · 16
1

4 = 161 = 16 

 

  



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       43 
 

Equations 

An equation expresses that what is to the left of the equality sign 

(=) equals what is to the right of the equality sign. If that is 

fulfilled the equation is true. 

We need equations to find one or more unknown quantities. That 

happens a lot.  

For instance, my salary depends on the number of hours I work. 

We can state that in an equation: 

Salary = hourly rate  times  number of working hours 

or from physics, Newton’s Second Law: 

force = mass  times  acceleration 

with symbols 

F = m · a 

If we know the numbers for the mass and the acceleration we can 

multiply them and find the force. 

Equations are needed everywhere. 

Let us start out with just one unknown, which in mathematics is 

often called x, and some known numbers. For instance  

x + 3  =  5 

it is easy to see that  x = 2. 

If we have x1 (which equals x), we talk about a first degree equation. 

If we have x2, we talk about a second degree equation. 

If we have x3, we talk about a third degree equation. 

If we have x4, we talk about a fourth degree equation. 
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And so on. 

Mostly, we need to solve first degree equations. We also have 

many second-degree equations, while third degree equations are 

rare and fourth degree equations are extremely rare. 

That corresponds well with the fact, that we only have safe 

methods to solve first degree and second degree equations. Higher 

degree equations can only be solved by special methods (about 

this later) or CAS.  

---------- 

In an equation 

 We may multiply by the same number (or letter, or other) 

on both sides of the equation, except 0. 

 We may divide by the same number (or letter, or other) on 

both sides of the equation, except 0.   

 We may add the same number (or letter, or other) on both 

sides of the equation. 

 We may withdraw the same number (or letter, or other) on 

both sides of the equation.  

It is crucial that what stands to the left equals what stands to the 

right. These four rules ensure that equality is maintained.    

Remember that, when we multiply, divide, add, or subtract, - it 

must to be for the whole of left side - and the whole of right side. 

 

Examples 

1. 

x + 3  =  5 
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multiply by 2: 2(x + 3)  =  2 · 5 

multiply by a: a(x + 3)  =  a · 5 

 

2. 

x + 3  =  5 

divide by 2: 
𝑥+3

2
  =  

5

2
  

divide by a: 
𝑥+3

𝑎
  =  

5

𝑎
  

 

3. 

x + 3  =  5 

add 2:  (x + 3) + 2  =  5 + 2 

add a:  (x + 3) + a  =  5 + a 

 

4. 

x + 3  =  5 

subtract 2: (x + 3) - 2  =  5 - 2 

subtract a: (x + 3) - a  =  5 - a 

 

Using these four rules, we can solve for x (make it stand on its 

own). We do so step by step. In order to carry on, we need a new 

sign: 
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  which means “logical equivalence”, or synonymous, or the 

same as. The double arrow shows, that the equation is valid 

regardless of calculation forward or backwards.  

 

5. 

x + 3  =  5   

(x + 3) - 3  =  5 - 3  

x + 3 - 3  =  5 - 3  

x  =  2 

Here we calculated forward. We can also calculate back: 

x  =  2   

x + 3 - 3  =  5 - 3  

(x + 3) - 3  =  5 - 3  

x + 3  =  5 

 

Let us look at the four calculation rules again in new examples: 

 

6. 

𝑥

3
  =  2 

Here we can multiply by 3 on both sides 

𝑥

3
  =  2   

3 · 
𝑥

3
  =  3 · 2   
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x  =  6 

But we might as well say that 3, which is in the denominator on 

the left side, may be moved to the numerator on the right side 

𝑥

3
  =  2   

x  =  3 · 2    

x  =  6 

which is quicker. 

 

7. 

3 · x  =  6 

we divide by 3 on both sides 

3 · x  =  6   

3𝑥

3
   =  

6 

3
   

x  =  2 

But we might as well say that 3, which is in the numerator on the 

left side, may be moved to the denominator on the right side 

3 · x  =  6   

x  =  
6 

3
   

x  =  2 

which is quicker. 
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8. 

x - 3  =  5 

we can add 3 on both sides 

x - 3  =  5   

x - 3 + 3  =  5 + 3  

x  =  8 

But we might as well say that 3, which is with a minus on the left 

side, may be moved to be with a plus on the right side 

x - 3  =  5   

x  =  5 + 3   

x  =  8 

which is quicker. 

 

9. 

x + 3  =  5 

we can subtract 3 on both sides 

x + 3  =  5   

(x + 3) - 3  =  5 - 3  

x  =  2 

But we might as well say that 3, which is with a plus on the left 

side, may be moved to be with a minus on the right side 

x + 3  =  5   

x  =  5 - 3   
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x  =  2 

which is quicker. 

 

10. 

 
2 

𝑥
  =  4  and  x  ≠  0 

Here we must add that x cannot be 0- since we cannot divide by 

zero. The sign  ≠  means ”not equal to” or ”different to”.  

It is seldom mentioned in the text of the problem, that  x  ≠  0, so 

we have to find out ourselves. It is particularly important, if our 

further calculation yields x equal to 0. That, cannot be used, and 

there will be “no solution”. 

Here, however, there is no problem 

2  =  4 · x   

x  =  
2

4
    

x  =  
1

2
  

 

11. 

Finally an equation with many operations 

𝑥 

3
  -  2x  + 4  -  

2 

3
  =  6 + 

6 

5
 - x 

we collect x on the left side, and numbers on the right side 

𝑥 

3
  -  2x + x  =  6 + 

6 

5
 - 4 + 

2 

3
  

reduction 
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𝑥 

3
  -  x  =  2 + 

6 

5
 + 

2 

3
  

find common denominators 

𝑥 

3
  -  

3𝑥 

3
  =  

15 ·2 

15
 + 

3 · 6 

3 · 5
 + 

5 · 2 

5 · 3
   

𝑥−3𝑥 

3
  =  

30 +18+10 

15
    

−2𝑥 

3
  =  

58 

15
    

15 · (-2x)  =  3 · 58   

-30x  =  174   

x  =  
174 

−30
     

x  =  - 
87 

15
  which is the precise answer. Or 

x  =  -5,8  as a decimal number, which here adds up. 
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Second degree equations 

When the unknown or variable (here called x) is squared, we have 

a second degree equation. For instance 

x2 - x  =  0 

or 

3x2 - x  =  - 3x + 1 

If we rearrange like this  

3x2 + 2x - 1  =  0 

and use letters instead of numbers 

ax2 + bx + c  =  0 

we can solve for x using this formula 

 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
  

Sometimes we may find a quicker way, but this formula always 

works. 

 

Examples 

With our figures the calculation is 

3x2 + 2x - 1  =  0   

 𝑥 =
−2±√22−4·3·(−1)

2·3
     

 𝑥 =
−2±√16

6
    

 𝑥 =
−2±4

6
     
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 x  =  
2

6
  =  

1

3
   and   x  =  

−6

6
  =  -1 

yielding two solutions:  
1

3
   and  -1  

That is new, but we can insert the two values in the original 

equation to find that it is true.  

First we insert  
1

3
  which renders   

3(
1

3
)2 + 2(

1

3
) - 1  =  0   

3(
1

9
) + 2(

1

3
) - 

3

3
  =  0   

3

9
 + 

2

3
 - 

3

3
  =  0   

1

3
 + 

2

3
 - 

3

3
  =  0   

0  =  0  

which is true 

 

Then we insert  -1  which renders   

3(-1)2 + 2(-1) - 1  =  0   

3·1 + 2(-1) - 1  =  0   

3 - 2 - 1  =  0   

0  =  0  

and that is true also. So yes, we have two valid answers, to values 

of x, two solutions. We also say that the equation has two “roots”. 

 

If we for instance found 
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2  =  0 

it clearly is ”false”, and thus the number we tested is not a root, - 

meaning: it does not fulfil the equation. 

 

Proof 

Most people just use the solution formula, but here is presented 

that it is correct. Actually, the proof is quite complicated: 

We have arranged the second degrees equation, so that it looks 

this way 

ax2 + bx + c  =  0    

we multiply by 4a on either side   

4a (ax2 + bx + c)  =  0    

multiply 4a into the parenthesis  

4a2x2 + 4abx + 4ac  =  0   

add b2 on either side 

4a2x2 + 4abx + 4ac + b2  =  b2   

move 4ac  

4a2x2 + 4abx + b2  =  b2 - 4ac   

Use one of the remarkable identities (square rules) on the left side 

(2ax + b)2  =  b2 - 4ac    

calculate the square root on either side.  

Here, however, we need to interfere: If we look at the left side 

(2ax + b) may originate from a negative number, which becomes 

positive when squared (minus times minus gives plus). That 
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cannot be seen, so we have to say that (2ax + b) may be negative 

or positive. We write ± and move it to the right side of the 

equation. That is allowed since the left side equals the right side:  

2ax + b  =  ± √𝑏2 − 4𝑎𝑐    

move b 

2ax  =  -b ± √𝑏2 − 4𝑎𝑐    

divide by 2a on either side 

 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 

and the formula is proved. 

 

More theory 

If we look at the formula again 

 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
  

we can focus on the square rooted entity 

 𝑏2 − 4𝑎𝑐 

and call it the discriminant, d 

d  =  𝑏2 − 4𝑎𝑐 

the discriminant means ”the one making the difference”. What 

difference? The difference that shows if the second degrees 

equation has got two, or one, or no solution: 

d  =  positive  two solutions (two roots) 

d  =  0   one solution (one root) 
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d  =  negative  no solution (no root) 

we cannot calculate the square root of a negative number. 

”no solution” actually has a geometric meaning, which we shall 

see later in the chapter about the parabola. 

 

Example 

If the second degree equation does not have a constant part (no c), 

we may use the zero solution: 

4x2 - x  =  0  x(4x - 1)  =  0 

where either x has to be 0, or the parenthesis has to be 0. => 

x  =  0  or  x = 
1

4
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Higher degree equations 

For first degree equations, we may have up to one solution. 

For second degree equations, we may have up to two solutions. 

For third degree equations, we may have up to three solutions. 

For fourth degree equations, we may have up to four solutions. 

and so on. 

 

In first degree equations, we solve for x by making it stand on its 

own on the left side of the equation.  

In second degree equations we arrange and use the formula to find 

x. 

In third degree equations, and higher, we guess a solution, insert it 

in the equation, and see if it is correct. It may seem strange, that 

we may guess, but that is fine in mathematics, if the guessed 

value(s) is tested. 

Often we will use CAS. The electronics in CAS do as we do. It 

makes a guess and tests it, checks how big the error is, make a 

new and closer guess, and so on. The method is called iteration 

(repetition). CAS does that quickly, but in general we can also get 

close to the result after 3-4 guesses. 

 

Examples 

x3  =  27 

we guess   x = 3  and make a test 

33  =   3 · 3 · 3  = 27 
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Which is true. So - 3 is one solution. 

What about -3. We make a test 

(-3)3  =  -3 · -3 · -3  =  -27 

Which is false. -3 is no solution.  

We cannot find other roots. Numerical numbers bigger than 3 can 

never be a solution, and it is easy to test numbers between  -3  and 

3. So, in this case we are sure that there are no other roots than 3. 

 

But what about: 

x3 - x2  =  0   

Maybe it becomes more clear if we write 

x3  =  x2 

We guess 0, yes. We guess 3, no. We guess 2, no. We guess 1, 

yes. Maybe -1: 

(-1)3  =  13 

-1  =  1 

which is false, so, no. 

Theoretically, three roots are possible, but it is easy to see that 

roots bigger than numeric 1 (ǀ1ǀ) are not possible. Also, it is easy 

to see that roots smaller than numeric 1 (ǀ1ǀ) are not possible. Only   

x = 0  and  x = 1  are roots. 
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Two equations with two unknowns 

If we have two unknowns, we need two different equations. 

If we have three unknowns, we need three different equations. 

And so on. 

There are two methods of solving two equations with two 

unknowns.  

The most logic method is to isolate in one equation and insert into 

the other. This method is widely used for all subjects. 

The quickest method in simple cases is the equal coefficients 

method.  

 

Examples 

Let us pretend that we are in a laboratory and measure something 

in two different ways giving us two different equations. Here we 

call the unknowns x and y - but they may stand for pressure and 

temperature, or time and number of bacteria, or something else. 

And we pretend that we have found these two relations: 

x + y  =  4  and 2x  =  2y + 2 

 

1. 

x + y  =  4  and 2x  =  2y + 2 

we isolate x in the first equation and insert into the other 

x  =  4 - y  inserted 2(4 - y)  =  2y + 2 

on with equation 2 
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2(4 - y)  =  2y + 2  

8 - 2y  =  2y + 2  

6  =  4y   

y  =  
6

4
  =  

3

2
  

which we insert into one of the original equations, no matter 

which. We choose to insert into equation 1: 

x + 
3

2
  =  4   

x + 
3

2
  =  

8

2
 

x  =  
5

2
  

complete answer  x = 
5

2
  and  y = 

3

2
. 

 

2. 

Same problem solved with the equal coefficients method: 

x + y  =  4 

2x  =  2y + 2 

Here it is easier if we write x above x and y above y: 

x + y  =  4 

2x - 2y  =  2 

Now we choose equal coefficients before x so we multiply 

equation one by 2: 
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2x + 2y  =  8 

2x - 2y  =  2 

Then we say equation 1 minus equation 2. 

2x - 2x gives zero, 2y - (-2y) gives 4y, 8 - 2 gives 6: 

4y  =  6   

y  =  
6

4
  =  

3

2
  

which is inserted into one of the original equations. We choose 

equation 2: 

2x  =  2· 
3

2
 + 2  

2x  =  5   

x  =  
5

2
  

complete answer  x = 
5

2
  and  y = 

3

2
   

The same as before, of course.  

Why is it allowed to subtract one equation from the other? 

Because we may subtract the same entity on either side. On the 

left side we subtract (2x - 2y), and must do the same on the right 

side, only we choose to subtract what (2x - 2y) is equal to, namely 

2. 
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Functions and proportionality 

A function is a technical term used when something depends on 

something else. A function is written as an equation and the 

function flow may be shown in a diagram. More about this in Part 2. 

For instance, my salary depends on how many hours I work. We 

can write it in an equation: 

salary  =  hourly rate  times  number of working hours 

In other words, my salary is a function of my hourly rate and how 

many hours I work. 

Or from Physics, Newton’s Second Law: 

Force  =  mass  times  acceleration 

with symbols 

F = m · a 

The force depends on the mass and the acceleration. Or: The force 

is a function of the mass and the acceleration. 

---------- 

Let us again look at the function/law of nature, Newton’s Second 

Law: 

F = m · a    (1)  a  =  F · 
1

m
    (2) 

Expression (1) shows that if the mass is twice as big, the force will 

be twice as big. We state that F and m are directly proportional. 

Furthermore, F and a are also directly proportional. 

(So, if both m and a are doubled, F will be four times as big). 

Expression (2) shows that if the mass is doubled, the acceleration 

will be half. We state that a and m are inversely proportional. 
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Intervals and inequalities 

We need a long working table which must be longer than 3 meters 

and shorter than 4 meters. If it is precisely 3 meters, it is slightly 

too short, - and if it is precisely 4 meters, it is slightly too long. 

We need a table in the interval 

]3;4[  (we know it is in meters, but we do not write it). 

3 is not included, neither is 4. An open interval. 

If 3 and 4 meters are usable, we can use a table in the interval 

[3;4]  

3 is included, so is 4. A closed interval. 

If 3 meters is usable but 4 meters are slightly too long  

[3;4[  

3 is included, but 4 is not included. A half-open (semi-open) 

interval. 

 

It can also be written as a double inequality: 

3  <  length  <  4 which corresponds to the interval ]3;4[  

3  ≤  length  ≤  4 which corresponds to the interval [3;4]  

3  ≤  length  <  4 which corresponds to the interval [3;4[  
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or shown in a small figure 

○─────○ the open interval 

•─────•  the closed interval  

•─────○  the half-open interval 

3              4 

 

Examples 

The easiest way is to write an interval or make a small sketch.   

Inequalities are not as common, but let us see what the signs 

mean: 

<  means smaller than 

≤ means smaller or equal to 

˃ means bigger than  

≥ means bigger than or equal to 

The small part is placed by the point of the sign. The big part is 

placed at the “mouth” of the sign. 

 

Instead of writing  

3  <  length  <  4 

We may write  

4  ˃  length  ˃  3 

 

If x is length and the limits are a and b, we write 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       64 
 

a  <  x  <  b  a double inequality  

which we rarely use for further calculation. It is more comfortable 

to split into two single inequalities 

a  <  x   and x  <  b 

and make calculations on each. We may: 

add the same on either side 

subtract the same on either side 

multiply by the same positive number on either side 

divide by the same positive number on either side 

If we will multiply or divide by the same negative number on 

either side, we must turn around the inequality sign because we 

turn things “upside-down”. An example: 

a  <  x a is small and x is big 

if we multiply by for instance  -2  on either side, we must turn the 

sign: 

-2a  >  (-2)x 

Because now  -2a  is big and  -2x  small. 

 

If we return to the example with the table and only consider the 

low limit: 

3  <  length 

It makes no sense to add for instance  2  on either side: 

3 + 2  <  length + 2 
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However, it is allowed as a calculation tool, and later we will see 

it used that way. 
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Imaginary numbers, briefly 

Imaginary numbers are not real but have to be imagined.  

What is meant? 

√64  =  8  is well known 

√−64   cannot be done, but if we change it a bit: 

√−64  =  √(−1) · 64  =  √(−1)  ·   √64    that is quite ok 

√(−1)  we name  I, that is also allowed, and then we have   

I · √64  =  I · 8   

So  √−64  =  I · 8   

which enables us to continue as if nothing has happened; only 

now, we are in the world of imaginary numbers. And suddenly we 

for instance have an imaginary solution to a second degree 

equation which had ”no solution”. 

CAS obtains both real and imaginary solutions. Most CAS 

(typically calculators) are programmed to give real answers only. 

However, some programs also give an imaginary answer, for 

instance  I · 8. That may be avoided by asking for ”Real Domain” 

or the like. 

 

Example 

Let us find the imaginary roots to a second degrees equation that 

has no real roots: 

x2 + 2x + 5  =  0   
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𝑥 =
−2±√22−4·1·5

2·1
     negative discriminant, with

    no real roots 

𝑥 =
−2±√−16

2
    

𝑥 =
−2±4√−1

2
    

x  =  −1 + 2√−1    and   x  =  −1 − 2√−1 or 

x  =  −1 + 2 I    and   x  =  −1 − 2 I 

thus two imaginary roots. 

---------- 

The combined use of real numbers and imaginary numbers is 

called complex numbers. Complex numbers may serve as a 

mathematical tool and will be described again at the end of this 

book.   
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Part 2. The coordinate system in the plane 

(2D) and functions 

The coordinate system and distance  

We live in a world of three dimensions, we call it the space and it 

consists of length, width, and height.  

If we work in two dimensions, we call it the plane, and it consists 

of two directions for instance horizontal and vertical. We may also 

call the directions for axis. Then we have the first-axis and the 

second-axis; or in more technical terms: The abscissa and the 

ordinate, both from Latin. Abscissa means ”out (ab) from here 

(cis)”, which may be pictured by standing at the starting point and 

looking horizontally at the horizon. The ordinate means the 

ordinary, which is vertical (all other directions would not be 

ordinary). 

In mathematics we often use the words x-axis and y-axis, 

 

but they can be called other things. In physics the first axis could 

be t for time, and the second axis could be v for velocity (velox in 

1.quadrant 2.qua. 

3.qua. 4.qua

. 
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Latin). In economy the first axis may be months and the second 

axis may be costs. And so on.  

The axis divide the plane in four quarters named the four 

quadrants. The first quadrant is where x and y are positive (both 

are +). Then we rotate counter clockwise to the 2. 3. and 4. 

quadrant.  

The axis form a right angle and intersect in a common starting 

point, denoted like this:  (x,y) = (0,0) . The starting point is called 

Origo (ancient Greek) or just O. 

At the axis we chose a scale suitable for the task. Usually, we 

chose the same scale for the two axes, but that depends on what 

we are going to plot. If the scales are alike, we use the technical 

term: equidistant.  

In all it is called a coordinate system (co(with) ordinate(the 

ordinary) system). It is being used everywhere. 

For instance, the coordinate system is used to show how a 

function varies: the straight line function, the parabola function, 

the sinus-function, and so on. 

We consider x first, and y as what follows. Therefore, the x-values 

of a function are also called the domain, and the y-values are 

called the range (sometimes: the amount of value). Denotations are not 

commonly used because the words domain and range are brief enough and 

very informative, but if we call the function, f, the denotations are:  Domain, 

D(f) - and Range, G(f). (R(f) for range would have been the logical choice, but R 

is used for something else). 

---------- 

The demand for a function is that for each x-value there is only one y-value. 

Therefore a function flow in a coordinate system cannot go forth and back 

since that would imply more y-values for one x-value. If that is needed we 
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talk about a vector function or a parameter function which will be discussed 

in Part 4. 

The ordinary rectangular coordinate system is also called the Cartesian 

coordinate system after the mathematician Descartes. 

Coordinates may also be denoted by polar coordinates: (distance from Origo , 

angle with +x axis). See the figure: 

 

We will consider polar coordinates a little more at the end of the book. 

Now it is about normal (Cartesian) coordinates. 

 

Distance 

Below is shown a coordinate system with three points called A, B 

and C with the coordinates:  A(2,3)  B(5,4)  C(1,-3).  

A and B are in the first quadrant, while C is in the fourth quadrant. 

We denote the distance between A and B, d, and find it by using 

one of the oldest and most important formulas, Pythagoras, which 

is valid for rectangular (90o) triangles. We sketch a helping 

triangle and see that the side in the x-direction (horizontal) has the 

length 3, while the side in the y-direction has the length 1. 

Polar 

Cartesian 

r  distance 

Ɵ angle 
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In other words, we found the lengths by saying 

x value for B minus x value for A  =  xB - xA  =  5 - 2  =  3 

y value for B minus y value for A  =  yB - yA  =  4 - 3  =  1 

 

Then Pythagoras states:  

d2  =  32 + 12   

d  =  √3 · 3 + 1 · 1    

d  =  √10    thus, the distance is  √10 

 

We can also denote the distance from A to B as ǀABǀ. The straight 

parenthesis means: 

length  =  numerical value  =  magnitude of the number 

In letters we obtain the distance formula: 

ǀABǀ2  =  (xB - xA)2 + (yB - yA)2    
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We may also compute the square root on both sides - some tables 

do. 

The distance formula is just Pythagoras in another way.  

 

Examples 

1. 

Above we found  ǀABǀ  =  √10    by saying B minus A.  

We get the same distance if we find  ǀBAǀ  by saying  A minus B:  

ǀBAǀ2  =  (xA - xB)2 + (yA - yB)2  => 

ǀBAǀ2  =  (2 - 5)2 + (3 - 4)2      

ǀBAǀ2  =  (-3)2 + (-1)2    

ǀBAǀ2  =  9 + 1   

ǀBAǀ  =  √10     

Surely, the distance from A to B is the same as the distance from 

B to A. 

 

2. 

We will also find the distance from C to A. 

To keep things in order we say ”end minus start”. For ǀCAǀ that is 

A minus C. 

ǀCAǀ2  =  (xA - xC)2 + (yA - yC)2  => 

ǀCAǀ2  =  (2 - 1)2 + (3 - (-3))2      

ǀCAǀ2  =  (1)2 + (6)2    
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ǀCAǀ2  =  1 + 36   

ǀCAǀ  =  √37    

 

For ǀACǀ it is C minus A: 

ǀACǀ2  =  (xC - xA)2 + (yC - yA)2 => 

ǀACǀ2  =  (1 - 2)2 + (-3 - 3)2      

ǀCAǀ2  =  (-1)2 + (-6)2    

ǀCAǀ2  =  1 + 36   

ǀCAǀ  =  √37     

Same answer. 

The sign  =>  means logical consequence. We use it when we can 

only go forward in the calculation, but not back. That happens 

when we introduce something from outside. Here we introduce 

our numbers in the formula.  
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Now we will consider important functions, their equations and 

their curves in coordinate systems (diagrams). 

We put many efforts into the straight line, because a lot within 

physics, biology, economy, design, etc., is described and 

explained by straight lines. Furthermore, we lay down the 

foundation for considering other functions.  

 

The straight line (The linear function) 

We write the equation for the linear function in two ways: 

1. 

Let us use the figure from the former chapter and draw a straight 

line through the points A and B: 

 

Also, we will use the helping triangle again: Using letters the side 

in the x-direction (horizontal) has the length: 

A and B in 

example 1 and 2 
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xB - xA  =  Δx 

and the side in the y-direction (vertical) has the length: 

yB - yA  =  Δy 

We use the Greek letter Δ (delta) when we describe a change or 

difference. Here it is the difference in x-values and y-values of the 

points. End minus start. (In physics Δt may be a temperature 

difference, in economy ΔI may be a difference in income, etc.). 

The technical word for Δ is ”change or difference” which may 

also be negative. 

Now we are interested in a number that tells us about the slope of 

a line. The line has a big slope if Δy is big compared with Δx.            

The line has a small slope if Δy is small compared with Δx. 

This is shown by the fraction  
𝛥𝑦

𝛥𝑥
  which is called the slope and 

usually denoted a. 

So, we define: 

slope of a line  =  a  =  
𝛥𝑦

𝛥𝑥
  =  

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑦

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑥
  

We go on calculating: 

a  =  
𝛥𝑦

𝛥𝑥
          a·Δx  =  Δy        Δy  =  a·Δx  

yB - yA  =  a·( xB - xA)   

yB  =  a·( xB - xA) + yA 

which is the equation for our straight line. Now, we named the 

points A and B. They may have other names, and many tables 

state: 

y  =  a·( x - x1) + y1  
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which is the equation for almost all straight lines (except for 

vertical lines).  

a is the slope, and (x1 , y1) is a known point on the line. If we 

know these, we can write the equation for a certain line and sketch 

it in a coordinate system.  

That was method 1. 

2. 

And now method 2, in which we continue calculations using the 

already derived equation for the straight line: 

y  =  a·( x - x1) + y1  

where (x1, y1) is a known point on the line. Let us choose point    

(0, b) which is on the y-axis with  y = b. This point is inserted and 

we have 

y  =  ax + b  

which is the most common equation for almost all straight lines 

(except the vertical lines).   

a is the slope and b is where the line intersects the y-axis. If we 

know a and b, we can write the equation for a certain line, and we 

can sketch it in a coordinate system. 

 

Examples 

1. 

We will find the equation for the line through points A(2,3) and 

B(5,4) using method 1: 

y  =  a·( x - x1) + y1  
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We must find a, x1 and x2 

a  =  
𝛥𝑦

𝛥𝑥
  =   

4−3

5−2
  =  

1

3
  

We chose to insert the coordinates of point A:  (x1 , y1) = (2,3) 

y  =  
1

3
  ( x - 2) + 3  reduction 

y  =  
1

3
 x - 

2

3
 + 3  

y  =  
1

3
 x - 

2

3
 + 

9

3
  

y  =  
1

3
 x + 

7

3
 

We might as well have inserted the coordinates of point B(5,4). 

Point B is also on the line, and will therefore fulfil the equation 

just as well: 

y  =  
1

3
  ( x - 5) + 4  

y  =  
1

3
 x + 

7

3
 

same answer of course. If we knew the coordinates of other points 

on the line, it would render the same equation. 

What we found is the equation for “our” line. 

 

2. 

We will now find the equation for the line through points A(2,3) 

and B(5,4) using method 2:   

y  =  a·x + b 

a is 
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a  =  
𝛥𝑦

𝛥𝑥
  =   

4−3

5−2
  =  

1

3
  

and b is found by inserting A or B (same result) into the equation. 

We chose A: 

3  =  
1

3
 · 2 + b   

b  =  
7

3
  

a and b inserted into the equation 

y  =  
1

3
 x + 

7

3
 

gives us the equation for “our” line. Same answer. 

 

Also, we will see what y becomes for  x = 3 

y  =  
1

3
 3 + 

7

3
  =  

10

3
  

and for  x = 17 

y  =  
1

3
 17 + 

7

3
  =  8 

Now we know that  (3, 
10

3
 )  and  (17,8)  are points on our line. 

 

3. 

Another example using method 2 - this time without numbers: 

My salary (y) equals my hourly rate (a) times how many hours (x) 

I work (a and x are directly proportional).  

salary  =  hourly rate · number of working hours  => 

y  =  a · x 
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If I also get a fixed amount regardless of how many hours I work, 

it can be written: 

salary  =  hourly rate · number of working hours + fixed amount => 

y  =  a·x + b 

where b is the fixed amount. 

 

4. 

Two lines are called l and m. Do they intersect? If so, at which 

coordinates? 

l:  y  =  -x + 3 

m: y  =  2x 

First we note that their slope is different - so we know that they 

will intersect somewhere. If the slopes were similar, they would 

be parallel and would never intersect.  

This is two equations with two unknowns: 

y from l is inserted into m 

-x + 3  =  2x  

-x - 2x  =  - 3  

x  =  
−3

−3
  =  1 

which is inserted in one of the old equations, here m 

y  =  2·1   

y  =  2 

Thus, intersection in (1, 2) 
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Shown in a diagram (another word for a coordinate system): 

 

l is decreasing (the slope is negative). 

m is increasing (the slope is positive). 

The point of intersect is read as  (1, 2). This is called a graphical 

solution, and it corresponds with the calculation. 

 

More theory 

A line continues endlessly in both directions. A line segment goes 

from one point to another point. For instance, the line segment 

from A to B as shown in a later chapter: Distance. 

There are four special straight lines: 

Intersection (1,2) 
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 The horizontal lines with slope 0. Here is shown the line 

with the equation  y = 4   

Another horizontal line is the x-axis itself, with the equation   

y = 0. 

 The vertical lines with slope  ∞  (a sign that means infinite). 

Consequently, they are not determined with the usual 

equations. Here is shown the line with the equation  x = 2   

Another vertical line is the y-axis itself, with the equation   

x = 0. 

By the way, it may be read that the lines  y = 4  and  x = 2  

intersect at point  (2,4)  

---------- 

Except for the special lines just mentioned, the slopes of two right 

angled (= orthogonal) lines multiplied will yield  -1. If the lines 

are called l and m, the following applies: 

al ·am  =  -1 

Therefore, we can see if two lines are orthogonal by multiplying 

their slopes and see if it yields  -1. For instance, we can check two 
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lines in a building to see if the corner of some walls have an angle 

of 90°. 

Proof 

The diagram shows two orthogonal lines called n and m. The 

equations are shown as well. 

n can pivot 90° round the point of intersection and become m, and 

the helping triangle follows.  

n’s slope reads:  an  =  
2

3
  

m’s slope reads:  am  =  
3

−2
  =  - 

3

2
  

multiplied it yields: 

an · am  =  
2

3
 · ( 

3

−2
 )  =  -1 shown with numbers 

or in letters: 

an · am  =  
ℎ

𝑙
 · ( 

𝑙

−ℎ
 )  =  -1  proven with letters 
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The parabola 

The technical term for a parabola is a ”second degree 

polynomial”. Second degree because x is raised to the power of 2. 

”Poly” means several and ”nomial” means part. 

We have nicknames for the figures we use, and this beautiful 

curve is named parabola, which means comparison, maybe 

because the figure is symmetric when we compare the two halves.  

The diagram shows two parabolas. One with the equation  

f(x)  =  x2 - 4 

and another with the equation 

g(x)  =  -2x2 + 5x + 4 
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For both parabolas, y is a function of x (y depends on x), but they 

cannot both be called y so the first we call f(x) (we say f of x), and 

the other is called g(x). 

The equation for all parabolas is: 

y  =  ax2 + bx + c  or  

p(x)  =  ax2 + bx + c  p for polynomial. 

A big a means that the parabola is narrow. A small a means that 

the parabola is wide. 

A positive a means that the branches face up. A negative a means 

that the branches face down.  

b moves the parabola in the x and y direction, while c only moves 

it in the y direction. 

---------- 

When we solved second degree equations, we had: 

ax2 + bx + c  =  0 

Now vi use the second degree equation for a parabola, and 0 must 

therefore be because  y = 0. 

y is 0 on the x-axis. Therefore, for a parabola, the solution to a 

second degree equation must be where the parabola intersects the 

x-axis.   

Often, there are two roots for x in the points where the parabolas 

two branches intersect the x-axis (like f(x) in the next diagram). 

If the discriminant is zero, there is only one root, which is the 

peak of the parabola touching the x-axis (like g(x) in the diagram).  

No solution means that the parabola does no intersect or touch the 

x-axis (like h(x) in the diagram).  
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So, when vi use the second degree equation for the geometry of 

the parabola, ”no solution” does have a meaning.  

---------- 

The Parabola has a vertex (“turning point”) with the coordinates:  

 ( 
−𝑏

2𝑎
 ,

−𝑑

4𝑎
 )    which we will prove: 

A parabolas vertex has but one x-value for one y-value. The 

vertex for a parabola with vertex on the x-axis, has the y-value of 

0. Thus, the discriminant is 0 and the x-value becomes: 

𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
  => x  =  

−𝑏

2𝑎
       for  d = 0 

If we move the parabola up or down, the y-value will change, 

while the x-value will remain 

x  =  
−𝑏

2𝑎
  



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       86 
 

which we insert into the equation of the parabola in order to find 

the y-coordinate: 

y  =  ax2 + bx + c  => 

y  =  a (
−𝑏

2𝑎
)

2
+ 𝑏 (

−𝑏

2𝑎
) + c  

y  =  
𝑎𝑏𝑏

4𝑎𝑎
 - 

𝑏𝑏

2𝑎
 + c   

y  =  
𝑏𝑏

4𝑎
 - 

2𝑏𝑏

4𝑎
 + c 

y  =  - 
𝑏𝑏

4𝑎
 + c   

y  =  
−𝑏𝑏+4𝑎𝑐

4𝑎
   

y  =  
−𝑑

4𝑎
   

x and y combined:   Vertex ( 
−𝑏

2𝑎
 ,

−𝑑

4𝑎
 )    and the formula is proved. 

 

Examples 

1. 

f(x) in the diagram just shown 

f(x)  =  x2 + 5x + 4 or 

y  =  x2 + 5x + 4 here we must remember, that this y-value is for f(x) only 

Where does it intersect the x-axis? 

That happens where  y = 0  which is on the x-axis 

Therefore, we insert 0 for y and solve the second degree equation 

x2 + 5x + 4  =  0 
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using the formula  

𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
    => 

𝑥 =
−5±√52−4·1·4

2·1
     

𝑥 =
−5±3

2
     

x  =  -4  and  -1 

which, corresponds with the diagram. 

 

Where does it intersect the y-axis? 

That happens where  x = 0  which is on the y-axis 

Therefore, we insert 0 for x and solve the second degree equation 

y  =  02 + 5·0 + 4    

y  =  4 

which, corresponds with the diagram. 

---------- 

It is called factorization, if we want to replace x2 by two parentheses with x1.  For 

instance,   

y  =  x2 + 5x + 4  may be factorized to  y  =  (x + 4)(x + 1) 

or 

y  =  2x2 + 10x + 8  when factorized  y  =  2(x + 4)(x + 1) 

It is done by putting the equations factor, a (here 2), out from the parentheses, find 

the roots, and form the first parenthesis as:   x - root1   and the other as    x - root2  

Factorization will be proved in the section: Proof of factorization of a second degree 

polynomium. 
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2. 

h(x) in the diagram just shown has the equation 

h(x)  =  -x2 - 3 

Where does it intersect the x-axis? 

On the x-axis y is 0. Here:  h(x)  =  0.  So 

-x2 - 3  =  0   

x2  =  -3 

which is not possible, therefore: ”no solution”. This means that the 

parabola h(x) does not intersect the x-axis. It corresponds with 

what we see in the diagram. 

 

3. 

h(x)  =  -x2 - 3 

Where is the vertex?  

formula ( 
−𝑏

2𝑎
 ,

−𝑑

4𝑎
 )     

where a  =  -1 b  =  0  (there is no x)  

and d  =  b2 - 4ac  =  0 - 4 · (-1) · (-3)  =  -12 

which inserted gives 

( 
0

2·(−1)
 ,

−(−12)

4(−1)
 )  =  (0, -3) 

which corresponds with the diagram. 
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4. 

Let us go back to the diagram with the parabolas: 

f(x)  =  x2 - 4 

g(x)  =  -2x2 + 5x + 4 

Where do they intersect one another? 

They intersect in a point (maybe two points) that fulfil both 

equations, where the one equation equals the other:  =>   

f(x)  =  g(x)   => 

x2 - 4  =  -2x2 + 5x + 4 

which is a second degrees equation to be arranged and solved: 

3x2 - 5x - 8  =  0 

formula: 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
    => 

here: 𝑥 =
−(−5)±√(−5)2−4·3·(−8)

2·3
   

 𝑥 =
5±11

6
     

 x  =  
8

3
  and  -1 

We call the x-coordinates of the intersection points  

x1  =  
8

3
   and   x2  =  -1 

We read the diagram to find that it corresponds. 
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We find the y-coordinates by insertion into one of the parabola 

equations. It does not matter which, because the intersection 

points are located on both parabolas. We chose f(x): 

y1  =  x1
2 - 4  =  (

8

3
)

2
 - 4  =   

28

9
   

y2  =  x2
2 - 4  =  (−1)2 - 4  =   -3   

Thus, the two intersection points are: 

( 
8

3
 ,

28

9
 )  and  ( -1 , -3 ) 

Which also corresponds with the diagram. 

Intersection points for all curves is found by having: 

equation for curve 1  =  equation for curve 2 

 

More on the parabola 

Many laws of nature are second degree equations that may be shown as 

parabolas in a diagram. For instance the formula for kinetic energy (motion 

energy), Ekin : 

Ekin  =  
1

2
 · m · v2  where m is mass, v is velocity. 

In a  v, Ekin - diagram (v on first axis, and Ekin on second axis) we will get 

half of a parabola. More about this later. 

---------- 

Parabolas for technical usage: If a parabola is rotated around its centre line 

we will get a parabola dish, which is a 3D figure. Among other things, it is 

used in front lights in cars where the bulb is located in the focus point of the 

parabola dish. Light radiated backwards and laterally will hit the parabola 

and be reflected forwardly. A very “open” parabola dish can also receive, for 

instance TV-signals, which are reflected to a receiving device at the focus 

point.     ..and much more.  
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Polynomials 

Polynomials have x as basis number and an exponent, n 

y  =  xn or 

f(x)  =  xn 

The recently discussed parabola is a polynomial with exponent 2. 

The diagram shows four relevant polynomials in the first 

quadrant: 

 

x is in a parenthesis, because the sketch program demands it, - mathematics 

does not demand it. 

A straight line  y  =  x1  =  x  is shown for comparison.  

Straight line 
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Examples 

1. 

y  =  x3 is called a third degree polynomial. 

For instance the volume of a sphere: 

V  =  
4

3
 · 𝜋 · r3  where radius is to the power of three. 

 

2. 

y  =  x2 is called a second degree polynomial or a parabola 

which was discussed in the latter chapter. 

For instance the formula for kinetic energy (motion energy): 

Ekin  =  
1

2
 · m · v2  where m is mass, v is velocity. 

If the mass is a constant (maybe a known number), Ekin will be a 

function of (depending of) v2 

 

3. 

y  =  x½      y  =  √𝑥   is called the square root function       

Again, we may use the formula for kinetic energy as an example, 

only now we solve for the velocity, v 

v  =  ( 
2𝐸

𝑚
 )½  

If the mass is a constant (maybe a known number), v will be a 

function of (depending of) Ekin
½  

 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       93 
 

4. 

y  =  x-1  =  
1

𝑥
   is called the reciprocal function 

Reciprocal must not be confused with ”reverse”, which we will 

discuss later. 

For instance Boyle Mariotte’s law from physics. It is valid (within 

limits) for gases and says that pressure times volume is a constant 

(a certain number) if temperature is kept constant: 

p · V  =  k   

p  =  k · V-1 

So, in a V,p diagram we have a curve similar to the one in the x,y 

diagram denoted (x)-1. The curve is called a hyperbole, which is 

ancient Greek and means ”exaggeration”.  

The hyperbole has the ability of never touching neither the first-

axis nor the second-axis. We say that it approaches the axis 

asymptotically, which also is ancient Greek and means ”no 

coincidence”.   
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Functions and the four basic arithmetic operations 

We may add, subtract, multiply and divide functions by one 

another.  

Let us consider Liz and Peter who in a year earn money in 

different ways. They work in Denmark, so the currency is in 

Danish kroner.  

Peter has a fixed salary every month: 

salary  =  salary per month · number of months => 

P(x)  =  30.000 · x 

Liz earns a lot at the beginning of the year and less later on. It fits 

approximately this function: 

L(x)  =  90.000 · x½  (she earns 90.000 the first month) 

The salary-functions look this way in a diagram:  

 

Salary 

Month 
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The following diagram shows how much they earn together (ca. 

660.000 kr. for the whole year). The curves have been added. 

It also shows how much Liz earns more than Peter. Curve L(x) 

minus curve P(x). Liz earns most until month nine, the rest of the 

year she earns less than Peter.  

 

 

In this case it is not interesting to multiply the two functions. We 

only get a steep curve that does not give useful information. 

However, it is shown in the next diagram. 

It is more interesting to see how much they earn relative to one 

another. Here we chose to see how much Liz earns relative to 

Peter:  
𝐿(𝑥)

𝑃(𝑥)
    

For a start Liz earns much more than Peter so the fraction gives 

big values on the second-axis. After a little time, they earn just 

Salary 

Month 
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about the same so the fraction becomes ca.1, and the curve 

becomes flat. 

The values on the second axis are made coarse (1 000 000 has 

become 100, etc.), so that we can better see the  
𝐿(𝑥)

𝑃(𝑥)
  curve. 

 

 

Composite functions 

We use composite functions if the result of one function 

afterwards applies in another function. For instance 

f(x)  =  2x + 1 and  g(x)  =  x2 

Here the composite function, where g is performed first and f 

thereafter, will be called  f(g(x)). We say f of g of x [some write          

(f ◦ g)(x)].  

g is called the inner function, and f is called the outer function.  

Here: 

Salary 

Month 
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f (g(x))  =  2(x2) + 1  thus, g inserted into f. 

A condition for composite functions is that the range of the inner 

function lies within the domain of the outer function. 

 

Inverse functions 

Usually we see y as a function of x. 

For reverse functions, we see x as a function of y. For instance 

y  =  2x + 1  here we have  y = f(x)  

x  =  
y − 1

2
     then we have  x = f(y)   

If we use the normal system of coordinates with x on the first-axis 

and y on the second-axis, we name the new y: x - and the new x: y 

(we swap). Rather confusing, but that is how it works: 

y  =  
x − 1

2
   which is the inverse function in the same 

system of coordinates. 

In order to avoid confusion of names we may write: 

Function  f(x)  =  2x + 1 => 

Inverse function f-1(x)  =  
x − 1

2
  

The elevated  -1  shows that it is an inverse function. This way, it 

is clear that f and f-1 are inverse of one another. 

Only monotonous (i.e. increasing or decreasing) functions have an inverse 

function. Domain and range are swapped as well. 

Inverse functions are especially interesting considering sinus, co-sinus and 

tangent - as well as 10 and log - as well as e and ln, which we will see later. 
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The right-angled triangle   

All triangles have an angular sum of 180°. The right-angled 

triangle has an angle of 90° leaving another 90° for the two others, 

for instance a triangle with the angles 30°, 60° and 90°.  

The right-angled triangle is important within mathematics and it is 

included in many designs and constructions.  

In the diagram is a right-angled triangle called ABC with sides 

named a, b, c.  

 

 

The ancient Greek, Pythagoras, found a formula which is valid for 

right-angled triangles: 

a2 + b2  =  c2 
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Probably the most used formula of them all.  

Seen from angle A, a is the opposite side and b is the adjacent 

side, and c is the hypotenuse (an old Greek name). 

A common right-angled triangle is the 3, 4, 5 triangle, i.e. a = 3,  b 

= 4 and c = 5. Then Pythagoras renders: 

32 + 42  =  52  

25  =  25   

which is true. That means we can easily make an angle of 90° by, 

for instance, having a plank with holes drilled 3 meters apart, 

another plank with holes drilled 4 meters apart, and a third plank 

with holes drilled 5 meters apart. Then we place them in a triangle 

with pegs in the holes, and the biggest angle will automatically be 

90°. We can also use three pieces of rope or anything, if only one 

is 3 long, the other is 4 long, and the third is 5 long, - and it does 

not have to be meters, it may be feet or any unit. 

The next diagram shows a small and a big right-angled triangle. 

The small triangle has the measures a1, b1, c1 and the big triangle 

has the measures a2, b2, c2.  
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If, as shown, the angles are alike, the following applies: 

 
𝑎1

𝑎2
  =  

𝑏1

𝑏2
  =  

𝑐1

𝑐2
  and 

𝑎2

𝑎1
  =  

𝑏2

𝑏1
  =  

𝑐2

𝑐1
  

as can easily be deduced from the diagram.  

Put in another way: If a grows, b and c grow correspondingly. If, 

for instance, a is doubled, b and c are doubled as well. 

Correspondingly at reduction. 

These triangles are one-angled. 

---------- 

The area for all triangles is 

Area  =  
1

2
 · baseline · height 

For a right-angled triangle it is particularly easy, since the baseline 

is the one cathetus (or leg), and the height is the other cathetus (in 

Latin the two smaller sides - the legs of the right angle - are called the two 

Catheti). 

For our small triangle, the area is: 
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A1  =  
1

2
 · 3  ·  2   =  3 

and for the big triangle, the area is: 

A2  =  
1

2
 ·  6  ·  4   =  12 

Please note that when the side lengths are doubled, the area 

becomes four times bigger.  

---------- 

A technical term for all triangles is ”trigonometry” which means 

triangle measuring.  

  



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       102 
 

The circle 

The earth is (almost) round. Many celestial bodies are round. The 

earth rotates around its own axis in a circular motion. Rotating 

machines do circular motion. Many constructions and designs 

have circles. The circle is important. 

The equation for the circle is surprisingly easy. It is “just” 

Pythagoras once more.  

The diagram shows a circle with centre  C(a, b)  and radius  r  

hitting the circle in point  P(x, y) 

 

The centre C is of course the same regardless of where we are on 

the circle. P, however, is variable, - the coordinates vary 

depending on where on the circle we are. The distance (r) to C is 

the same for all P´s.  
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We sketch a helping triangle and use Pythagoras: 

(horizontal side)2 + (vertical side)2  =  radius2   

(x - a)2 + (y - b)2  =  r2 

which is the equation of the circle.  

 

Examples 

1. 

The circle shown has the equation: 

(x - 4)2 + (y - 3)2  =  52 

Where will our circle intersect the horizontal line  y  =  6 ? 

The line is not shown, but it is seen that the line must intersect in 

point  (0, 6) and (8, 6) 

The intersections are where the line equation equals the circle 

equation, which is solved by two equations with two unknowns: 

line  y  =  6 

circle (x - 4)2 + (y - 3)2  =  52 

line in circle: (x - 4)2 + (6 - 3)2  =  52   

  x2 - 8x + 16 + 9  =  25   

  x2 - 8x  =  0 

here, without c, we may use the zero-solution: 

  x·(x -8)  =  0  => 

either x or (x - 8) is zero    

x  =  0      or   (x - 8)  =  0     x  =  8 
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Combined we find that the line intersects the circle in point        

(0, 6) and (8, 6) 

which corresponds nicely with our reading.  

 

2. 

The ancient Greeks determined the circumference of a circle as: 

O  =  2 ·  𝜋 · r  

where  𝜋  ≈  3,14   =>   2 𝜋  ≈  6.28 

For our circle it is 

O  =  2 ·  𝜋 · 5  ≈  31.4 

 

Also, they determined the area of a circle as 

 A  =  𝜋 ·   𝑟2 

for our circle it is 

A  =  𝜋 ·  52  ≈  78.5 
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Sine, cosine and tangent 

We imagine that we are playing with a kite in the wind. It does not 

matter how long the line is (as long as it is constant). We state that the 

length is 1. It lies horizontally on the ground. Then the wind 

comes and lifts it in a circular motion. The line length still is 1, so 

as it rises, it will come closer to us measured along the ground 

(horizontally). Yet it is still 1 length away from us, only now 

shared in horizontal and vertical. 

Let us see it in a diagram: 

 

We stand at Origo (0, 0). The kite is in point P. The vertical height 

of the dragon is named sinus, and the horizontal distance is named 

co-sinus. Sinus is Latin and stands for ”height of arc”.  Co- means 

“with”, so co-sinus is in context with sinus, since it also depends 
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on sinus. We also clearly see that when the dragon rises, sinus 

increases and co-sinus decreases. If the kite rises very high, sinus 

is big and co-sinus is small, - it is almost right above us.  

We shorten for sine and cosine, and in calculations we use the 

abbreviations  sin  and  cos. 

sin and cos depend on the angle v (for vertex). (The angle may have 

all sorts of names). We show it by writing  sin v  for the vertical 

height of the arc (y-direction), and  cos v  for the horizontal 

distance (x-direction). 

If v becomes bigger P will turn counter clock wise, which is the 

positive direction of rotation (+ rotation), shown in the diagram by 

a small arrow and a +. 

In other connections clockwise rotation often is plus, but in 

mathematics +rotation is counter clock wise. 

Observed from angle v, the side in front of you (the opposite side) 

will always be the ”sine-side”, and the adjacent side that further 

away ends in a straight (90°) angle will always be the “cosine-

side”. The long oblique side will always be the hypotenuse.  

This is also the case if we move the triangle, change it (yet still 

straight angled), and turn it.  

In the next diagram we show a straight angled triangle, where the 

hypotenuse (the longest side) is 6 long and the angle is called w. 

Then the sine-side still is the opposite, and the cosine-side will 

still be the adjacent side that further away ends in a 90° angle. 

Only now, they are 6 times longer.  
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Let us again consider the diagram showing a straight angled 

triangle in the unit circle (the name of a circle with radius = 1): 

 

The fraction  
sin 𝑣

cos 𝑣
  informs how big sine is relative to cosine. This 

fraction is called tangent, tan in brief:  
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tan v = 
sin 𝑣

cos 𝑣
 

We see that   tan v  gets bigger and bigger (since  sin v  increases 

and  cos v  decreases) as v goes from 0° towards 90°. 

We have already seen a straight angle with a fraction of two 

catheti, which was: 

slope  =  a  =  
𝛥𝑦

𝛥𝑥
   

and yes, it is the “same”. The difference is that the slope is valid 

for a straight line in a coordinate system, while tangent is valid for 

a straight angled triangle in any position.   

Yet, if we place our straight angled triangle in a coordinate 

system, we may talk about the slope of our hypotenuse. Thus, for 

this hypotenuse: 

tan v = 
sin 𝑣

cos 𝑣
  =  

𝛥𝑦

𝛥𝑥
  =  a  =  slope 

---------- 

If you read an old textbook, it may have another tangent 

abbreviation: tg 

And since we talk about notations:  

(sin v)2  =  sin2v (cos v)2  =  cos2v (tan v)2  =  tan2v 

This book has the first notation. Other books and tables may have 

the other notation.  

 

Examples 

1. 

Let us start out using Pythagoras on the triangle in the unit circle: 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       109 
 

(sin v)2 + (cos v)2  =  12  called the basic relationship 

This equation makes it possible to solve for sin v  

(sin v)2  =  1 - (cos v)2    

sin v  =  [1 - (cos v)2]½   

where the exponent ½ is used instead of a square root. We will use 

this relation later on.      

 

2. 

Using fine measurement methods on the unit circle, we may find 

the magnitude of the sine-side and the cosine-side of various 

angles. These magnitudes lead to functions which are 

programmed in CAS.  

So, for instance we may enter  sin 30°  and get the answer  
1

2
   

or we may enter  cos 30°  and get the answer  
√3

2
   

From that we may calculate  tan 30°  = 
1

√3
   

or we may enter  tan 30°  and get the same answer  
1

√3
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Some angles and the corresponding values of sine, cosine and 

tangent are comfortable to memorize: 

Angle 0° 30° 45° 60° 90° 

sin 0 
1

2
   

√2

2
   

√3

2
  1 

cos 1 
√3

2
  

√2

2
  

1

2
   0 

tan 0 
√3

3
  1 √3  - 

tangent at 90° would be 1 divided by 0 which cannot be done. 

 

3. 

From the table in example 2 we have: 

sin 30°  =  
1

2
  

Also, we may use the table backwards having: 

sin-1 ( 
1

2
 )  =  30° (in the US sin-1 is called arcsin or invsin) 

or  

cos 45°  =  
√2

2
  

and the inverse function 

cos-1 ( 
√2

2
 )  =  45° (in the US cos-1 = arccos = invcos)

  

The inverse functions are programmed into most CAS. 
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4. 

Let us find the angle u and v in this triangle by a calculation 

commonly used by constructors and designers: 

 

tan u  =  
sin 𝑢

cos 𝑢
  =  

2

3
  

Looking at the table in example 2, we deduce that the angle may 

be between 30° and 60° (nearest 30). CAS also has the inverse 

function, so asking for  tan-1 to 
2

3
  renders  33,69° 

We find angle v the same way, only now the sine-side is 3 and the 

cosine-side is 2: 

tan v  =  
sin 𝑣

cos 𝑣
  =  

3

2
   

v  =  tan-1 ( 
3

2
 )  =  arctan ( 

3

2
 )  =  invtan ( 

3

2
 )  =  56,31°  

Controlling:  90° + 33,69° + 56,31°  =  180°   Ok. 
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5. 

An example, to show from where tangent has its name:  

 

The small triangle and the big triangle are one-angled => 

 
sin 𝑣

cos 𝑣
  =  

tan 𝑣

1
  

and using the unit circle we see tan v depicted.  

In times before CAS, it was possible to determine tangent this 

way, yet this is not the definition of tangent, which is: 

tan v  =  
sin 𝑣

cos 𝑣
   

  



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       113 
 

Radian 

Radius radiates from the centre to the periphery, thus the name.   

Radian is nature’s own way of measuring an angle. Man decided 

to measure an angle in degrees, but also, it is measured in radians: 

The ancient Greeks found that the circumference of a circle is 

proportional with the radius of the circle. They called the 

proportionality factor: 2𝜋 

Circumference  =  2 ·  𝜋 · radius  

O  =  2𝜋 · r  

They also found  𝜋  ≈  3,14   =>   2𝜋  ≈  6,28 

Thus, radius is the variable determining the size of a circle’s 

circumference. If r doubles, O will double too, etc. 

So, one tour round a circle is 2𝜋 radii regardless of the size of the 

circle. This, we now call 2𝜋 radian, or briefly: 2𝜋 rad 

One tour round a circle is also a tour of 360° regardless of the size 

of the circle. Therefore: 

2𝜋 radian  =  360 degrees 

which may be down parted to for instance: 

𝜋 rad  =  180°   

𝜋

2
 rad  =  90°   

𝜋

4
 rad  =  45° 

and so on. See also the figure: 
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Proportional calculation leads to this conversion formula: 

 
𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛

2𝜋
  =  

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

360
  

 

Examples 

1. 

An angle v is 30°, what is it in radians? 

Answer: 

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛

2𝜋
  =  

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

360
    

vrad  =  2𝜋 · 
30

360
     

vrad  =  
𝜋

6
 rad 
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Usually, we do not render a decimal number. We leave 𝜋 in order 

to be precise and to show, that we are using radians, - even if we 

also state, rad 

 

2. 

An angle w is 60°, what is it in radians? 

Answer: 

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛

2𝜋
  =  

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

360
    

wrad  =  2𝜋 · 
60

360
     

wrad  =  
𝜋

3
 rad 

 

3. 

An angle is 1 rad, what is it in degrees? 

Answer: 

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛

2𝜋
  =   

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

360
    

udeg  =  
360 ·1

2𝜋
     

udeg  ≈  57,3° 

Here we usually write a decimal number. 

 

4. 

An angle φ (fi) is 𝜋 rad, what is it in degrees? 
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Answer: 

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛

2𝜋
  =  

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

360
   

φdeg  =  
360 ·𝜋

2𝜋
     

φdeg  =  180° 

 

Angle and circular arc length 

Let us again look at the formula for the circumference of a circle: 

O  =  2𝜋 · r   O is the special arc length called the circumference 

and divide by 2 on either side 

 
𝑂

2
  =  𝜋 · r   which is half a round  

then we divide by, for instance, 3 on either side 

𝑂

6
  =  

𝜋

3
 · r  and the arc length becomes less 

These three expressions gathered in a common equation: 

arc length  =  angle (in rad) ·  radius 

angle and arc length are directly proportional. 

 

Example 

5. 

What is the arc length of 45° of a circle with radius 9 meters? 

We alter from 45° to radians: 

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛

2𝜋
  =  

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

360
 => 
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angle in rad  =  2𝜋 · 
45

360
   

angle in rad  =  
𝜋

4
  

and:  arc length  =  
𝜋

4
 · 9  ≈  7,07 meters 

 

End of chapter 

Let us end this chapter by showing a table from the former chapter 

(sine, cosine and tangent), - only now expanded with angles in 

radians: 

Angle 0° 30° 45° 60° 90° 

Angle 0 rad 
𝜋

6
 

𝜋

4
  

𝜋

3
  

𝜋

2
  

sin 0 
1

2
   

√2

2
   

√3

2
  1 

cos 1 
√3

2
  

√2

2
  

1

2
   0 

tan 0 
√3

3
  1 √3  - 

tangent at 90° would be 1 divided by 0, which cannot be done. 

 

In some books and in some tables, v is an angle in degrees, and x 

is an angle in radians. Often we need to be aware of different 

names for things alike. 
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The sine function and the sine oscillation  

We will look at the unit circle again: 

 

We call it the unit circle because radius is 1. 

If angle v is 0, point P is on the x-axis with the coordinates (1, 0). 

Then  cos v = 1  and  sin v = 0 

if v increases,  sin v  will increase, and  cos v  will decrease. 

if  v = 90° ( 
𝜋

2
 ):  cos v = 0  and  sin v = 1 

if we continue rotation in the + direction (counter-clockwise) in 

2.quadrant,  cos v  becomes more negative and  sin v  less positive 

at  v = 180° (𝜋):  cos v = -1  and  sin v = 0 

in 3.quadrant  cos v  becomes less negative, and  sin v  becomes 

more negative 

at  v = 270° ( 
3𝜋

2
 ):  cos v = 0  and  sin v = -1 
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in 4.quadrant  cos v  becomes more positive, and  sin v  becomes 

more negative 

at v = 360° (2𝜋) we start over. 

The way sin v varies, can be written in a function: 

y  =  sin v 

and we can display the function in a coordinate system with v in 

radians on the first-axis and sin v on the second-axis: 

 

The curve fluctuates about the neutral axis (here the first-axis). 

The maximum fluctuation is called the amplitude (here +1 and -1). 

One rotation from 0 to 2𝜋 is called a cycle or a period. 

We also display the cosine function 

y  = cos v 

Sine function 
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Which is alike only moved  - 
𝜋

2
 along the first-axis. 

So, we only consider the sine function. 

As we have seen, the sine function may be used to find angles and 

arc lengths of circle segments, and together with cosine and 

tangent we can do calculations on straight angled triangles, which 

is important within geometry. We can state, that the sine function 

combines circles, angles, arc lengths and straight angled triangles.  

Yet, the sine function holds more:  

 

Sine oscillation 

Many things rotating or fluctuating follow the sine function. 

Repeating events. We name them sine oscillations. Sine 

oscillations appear in nature as well as in technics, and especially 

the technical oscillations demand an expansion of the equation. 

We find sine oscillations in nature in for instance our pulse and 

breath, temperature fluctuations over the year, the 24 hour rhythm, 

tide, sound, light, etc. 

Cosine function 
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Examples for technical oscillations are rotating machinery, sound 

technique, music instruments, light technique etc. 

Sine oscillations apply when something fluctuates up and down, 

forth and back, rotates, etc. 

---------- 

Let us consider something rotating with a constant speed, - for 

instance the earth´s rotation around its own axis. Then arc length 

and time are related:  

In 24 hours the earth turns the angle  2𝜋 radians  and the arc 

length  2𝜋𝑟. In 1 hour the earth turns  
2𝜋

24
  radians, and the arc 

length  
2𝜋𝑟

24
  etc.  

So, angle and arc length are proportional.  

We now need a physical size called the angular velocity (ꞷ), 

which defines as the angular turn in radians divided by time in 

seconds (t): 

angular velocity  =  
𝑎𝑛𝑔𝑙𝑒

𝑡𝑖𝑚𝑒
   

and in symbols 

ꞷ  =  
𝑣

𝑡
   v is the angle 

v  =  ꞷt   ꞷ is the Greek omega  

Now our angle is  ꞷt  and the sine function is thus a function of 

time, t, and looks this way: 

f(t)  =  sin ꞷt 

---------- 

In techniques we may need to change the angle. It is written as: 
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f(t)  =  sin (ꞷt + φ) φ is the Greek letter fi.  

Now the angle is  (ꞷt + φ) 

We may also need to change the amplitude. We do so, by 

multiplying by A, the size of the amplitude. A is measured from 

the neutral line to the maximum top or bottom.  

Finally, we may need to move the sine curve up (or down) in the 

diagram. Therefore, we add k. If k is positive, the curve is moved 

upwards, and if k is negative, it is moved downwards:  

f(t)  =  A · sin (ꞷt + φ) + k 

This is the expanded sine function, or the equation for a sine 

oscillation. 

These sine oscillations are also named harmonic oscillations. 

 

Examples 

1. 

This diagram shows a partly expanded sine function, where the 

curve continues to depend of the angle v, and where: 

A = 0,5 k = 0,5 => 

f(v)  =  1,5 · sin(v) + 0,5 

v on the first axis and f(v) on the second axis. 
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It reads, that the neutral axis now is for  f(v) = 0,5  since  k = 0,5  

and the amplitude A equals 1,5 

 

2. 

Now we wish to consider the sine function related to time instead 

of angle. We do so by insertion of numerical values for ꞷ and φ. 

The diagram displays a fully expanded sine function, where: 

A = 1,5 ꞷ = 2 φ = 3 k = 0,5 => 

f(t)  =  1.5 · sin(2t + 3) + 0.5 

with t on the first axis and f(t) on the second axis. 

Period T 

Neutral axis 

Amplitude 
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We note that the values on the second axis show an unchanged 

oscillation from  -1 to  2, while the values on the first axis have 

changed from angle to time. This is due to the values inserted for 

ꞷ and φ.  

ꞷ and φ put together in the fraction  - 
𝜑

ꞷ
  move the curve in the x-

direction without changing its shape.  - 
𝜑

ꞷ
  is called the phase shift. 

This is proven below: 

 

Proofs 

The angle  (ꞷt + φ) for one oscillation lies between  0 and 2𝜋 

radians: 

0 ≤  (ꞷt + φ)  ≤  2𝜋     

- φ  ≤  ꞷt  ≤  2𝜋 - φ   
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- 
𝜑

ꞷ
  ≤  t  ≤  

2𝜋−𝜑

ꞷ
   

So the initial value has changed from  0 to  - 
𝜑

ꞷ
   which therefore is 

called the phase shift. 

The calculation also shows that one oscillation goes from  - 
𝜑

ꞷ
  to   

2𝜋−𝜑

ꞷ
  . We see that by having:   

end minus start  

2𝜋−𝜑

ꞷ
  -  (- 

𝜑

ꞷ
 )  =  

2𝜋

ꞷ
 which is named the period, T 

T  =  
2𝜋

ꞷ
  

Often t is time so T is for one whole oscillation = one cycle = one 

period.  
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The not right angled triangles 

Also called the arbitrary triangles.  

This chapter also comprises the isosceles and equilateral 

triangles, which usually are not considered arbitrary. 

 

For all triangles the angular sum is 180° 

The area of all triangles is 

Area  =  
1

2
 · base line · height 

A height in a triangle leads from one corner perpendicularly to the 

opposite side. 

 

For all one-angled triangles, it applies that 

 
𝑎1

𝑎2
  =  

𝑏1

𝑏2
  =  

𝑐1

𝑐2
  and 

𝑎2

𝑎1
  =  

𝑏2

𝑏1
  =  

𝑐2

𝑐1
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Yet, Pythagoras does not apply for arbitrary triangles. Instead, the 

sine rules and the cosine rules apply: 

𝑎

sin 𝐴
  =  

𝑏

sin 𝐵
  =  

𝑐

sin 𝐶
  c2  =  a2 + b2 - 2a·b·sin C 

 

Proofs 

The sine rules: 

The area of a triangle may be written in three ways: 

A  =  
1

2
 · a · ha  =  

1

2
 · b · hb  =  

1

2
 · c · hc  

Instead, the heights may be seen as sine sides in the smaller inner 

triangles (see the former figure). For instance   

ha = sin B · c    => 

1

2
 · a · sin B · c  =  

1

2
 · b · sin C · a  =  

1

2
 · c · sin A · b   

a · sin B · c  =  b · sin C · a  =  c · sin A · b   

and when we divide all parts of the equation by  a·b·c.   
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sin 𝐵

𝑏
  =  

sin 𝐶

𝑐
  =  

sin 𝐴

𝑎
     

or reciprocal as stated in some tables 

𝑏

sin 𝐵
  =  

𝑐

sin 𝐶
  =  

𝑎

sin 𝐴
   

The sine rules are the easiest, but if they prove to be insufficient, 

the cosine rules will probably apply 

 

The cosine rules 

The line segment b in the first diagram may be split in  b-x  and  x  

and since the inner, smaller, triangles are straight, we can use 

Pythagoras 

first triangle BCD   

x2 + hb
2  =  a2    hb

2  =  a2 - x2 

then triangle ABD 

(b - x)2 + hb
2  =  c2  =>  

b2 + x2 - 2bx + (a2 - x2)  =  c2    hb
2  inserted 

x is the cosine side for angle C in triangle BCD 

x  =  a · cos C  =>  

a2 + b2 - 2a·b·cos C  =  c2   x inserted 

 

We could also have considered the line segments a and b which 

would yield: 

b2 + c2 - 2b·c·cos A  =  a2 

a2 + c2 - 2a·c·cos B  =  b2 
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So, there are three cosine rules, but usually tables only show one 

of them. 

 

More theory 

We need to know three things about a triangle to be able to 

construct it. There are, however, two exceptions: 

 If we know all three angles, the triangle may have all sizes. 

 If we know two side lengths and an angle which is not 

between the two, there might be a problem, which is 

illustrated in the figure: 

 

We sketch angle A. Mark point B. ǀBCǀ is now the radius for a 

compass, and we see that C may have two positions. 

This error is unfortunately rather common, for instance in 

designing a rafter. The designer meant C1 but had C2. 

The tricky triangle. 

A is known,  ǀABǀ is known, 

ǀBCǀ is known.       
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Examples 

For a triangle B = 82°, b = 14 and c = 13,1 

What is C? 

We use the part of the sine rules where we have information: 

𝑐

sin 𝐶
  =  

𝑏

sin 𝐵
    

sin C  =  
𝑐 ·sin 𝐵

𝑏
  => 

sin C  =  
13,1 ·sin 82°

14
    

C  =  sin-1 (
13,1 ·sin 82°

14
 )   

C  =  67,9° 

 

Side a? 

A is  180° - 82° - 67,9°  =  30,1° 

We can use the sine rules one more time, but we chose the cosine 

rule 

b2 + c2 - 2b·c·cos A  =  a2  => 

a2  =  142 + 13,12 - 2·14·13,1· cos 30,1°  

a2  =  50,27     

a  =  7,09 
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Exponential functions 

Exponential functions have a positive constant (here called a) as 

base number and x as exponent 

y  =  ax or 

f(x)  =  ax 

In the diagram: 

f(x)  =  (
1

4
)

𝑥
   g(x)  =  (

1

2
)

𝑥
   h(x)  =  1x 

i(x)  =  2x  j(x)  =  4x  

 

This time x is omitted in f(x) and shortened to f, g, etc. It is allowed since it is 

clear that x is on the first axis. 
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Exponential functions have domain in the interval ]-∞;∞[ and 

range in the interval ]0;∞[ and are therefore placed in the first and 

second quadrant only. The first quadrant is usually the interesting 

one.  

Generally, an exponential function is decreasing (seen in the +x 

direction) when a is between 0 and 1, - and increasing when a is 

bigger than 1. 

The h function has  a = 1 , so it is horizontal and separates 

decreasing from increasing.   

Also, note that all exponential functions go through point (0, 1), so 

in the first quadrant they will all start here.  

---------- 

Exponential functions are interesting, because they often apply in 

nature, particularly the one with the base number  2.7183… or 

approximately 2.72. This base number is called  e after a known 

mathematician by the name Euler: 

Euler’s number  =  e  ≈  2.72 

Exponential functions with base number e are shown in the next 

diagram. 

We find e ≈ 2.72 by reading f(x) at  x = 1. The point is marked    

(1, e)  

Why is base number e so interesting? It is because of the slope of 

the curve, which we need to explain first: 

The slope informs how much a function increases (the slope is 

positive) or decreases (the slope is negative). 

The slope changes, so if we will find it in a certain point, we put a 

tangent to the point and find its slope, which also is the curve’s 
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slope right there. At the starting point (0, 1) where f(x) is 1, our 

exponential function  ex  has the slope 1.  

Now, we can give an answer: 

The exponential function with base number e is so interesting 

because for f(x) = 1 the slope also is 1. For f(x) = 2 the slope also 

is 2. For f(x) = 3 the slope is 3, etc. 

 

 

So for all exponential e functions we have: 

f(x)  = ex       and   tangent slope  =  ex   

No other function has this ability that the function value and the 

tangent slope is the same, namely ex. An ability found in many 

Slope  Δy/Δx = 1 
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connections for biological growth of bacteria, plants, 

animals,……, and physical as well as chemical processes.  

Therefore, the function is named: ”the natural exponential 

function”, and the base number e (Euler´s number) is one of the 

most significant constants in mathematics.  

Much more about this in Part 3. 

 

More theory 1 

First we consider the ordinary exponential function with the 

variable a as base number (the one we started out with). Just like 

when we earlier wanted to expand the sine function, we now want 

to expand the exponential function so it may be widely used. We 

expand from  

f(x)  = ax    the exponential function 

to 

f(x)  =  b · akx the function for exponential growth 

where b gives the curve another point of intersecting the second 

axis (or starting point, if we only consider the first quadrant), and 

k makes the curve more or less steep. Alt. f(x)  =  b · cx   for  ak = c 

 

Example 1 

Let us consider an example from economy: 

f(x)  =  b · akx is rearranged 

Kn  =  K0 · (1 + r)n  which is the interest formula 

Here f(x) is now called Kn which is a future value 
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b is called K0 which is the initial value 

a is called (1 + r) where r is the interest rate 

kx is now called n, the number of terms, which is the time period 

of the actual interest rate (often in number of years).  

Using this equation, we may for instance calculate the future value 

of money we lend in the bank today and pay back 5 years from 

now. If we lend 10.000 pounds with an interest rate of 4% per 

year in 5 years, we then will owe: 

K5  =  10.000 · (1 + 0,04)5  =  12.167 pounds 

 

More theory 2 

In the same manner we now consider the natural exponential 

function with e as base number and expand from 

f(x)  = ex    the natural exponential function 

to the 

f(x)  =  b · ekx e function for exponential growth 

where b gives the curve another point of intersecting the second 

axis (or starting point, if we only consider the first quadrant), and 

k makes the curve more or less steep. k is negative at negative 

growth.  

 

Example 2 

The diagram shows an e function for exponential growth, where   

b = 5  and  k = -1. 

the negative k makes the curve exponentially decreasing. 
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An example might be decay of a radioactive matter, here with 

time on the first axis and radioactivity on the second axis. The 

curve would start in point (0, 5), unless we want to go back in 

time.  
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Logarithm functions (log and ln) 

Logarithm is Latin and means something like ”arithmetic 

numbers”. 

Here we calculate in a new way.  

The four basic arithmetic operations can be used for most, but we 

need more. The first time, we saw something new, were the 

functions sin, cos and tan (going from angle to distance), and their 

inverse functions sin-1, cos-1 and tan-1 - or arcsin, arccos, arctan - 

or invsin, invcos, invtan (going from distance to angle).  

Now we again have to calculate in a new way.  

We need a tool to find x in exponential equations like 

y  =  10x      and y  =  ex  

 

The 10s logarithm 

Let us consider this row of numbers with powers of 10. Below we 

just write the exponents: 

    10x      … 10-2   10-1   100   101   102   103   104 …      log10x 

     x        …  -2      -1      0      1      2       3      4   …      x 

It is clear that we go from row 2 to row 1 by saying: 

x  is transferred to 10x    or 

x         10x  

When we go from row 1 to row 2, we now decide to say: 

log10x         x so, we define that log10x  =  x 
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In words: The logarithm of 10x is x, - and then we may insert a 

number instead of x. 

Now we can solve the equation  

y  =  10x      by having the logarithm on either side 

log y  =  log10x   

log y  =  x   

x  =  log y  

If y is a known number, for instance 100 (= 102), we can read in 

the table we just made that  log102 = 2  and finish by having 

x  =  2 

Our table only contains a few numbers, but fine tables are 

programmed into CAS. For instance, we may enter: 

log 37  ≈  1.57 

Please note that all numbers in row 1 are positive. We can only 

find the logarithm of numbers bigger than zero (> 0).  

---------- 

There are more advantages, since it gives us the opportunity to 

shift between row 1 and 2. Multiplication and division in row 1, 

become addition and subtraction in row 2, - and vice versa.  

Example I.  102 · 103 in row 1 become 2 + 3 in row 2. 2 + 3 is 5. 

Returning to row 1 we find the answer 105  

Example II.    102 : 103 in row 1 becomes 2 - 3 in row 2. 2 - 3 is -1. 

Returning to row 1, we find the answer 10-1  

We rarely need the other way round, but let us try: 
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-1 + 4 in row 2 become 10-1 and 104 in row 1. 10-1 · 104 is 103. 

Returning to row 2, we read the answer: 3  

It works.  

In times before CAS, we used a slide rule which is based on the 

10s logarithm. Today we have CAS, so now logarithms are mainly 

used to solve exponential equations just as we started out with.  

---------- 

The calculation rules for 10s logarithms are: 

Instead of numbers in example I 

log(102·103)  =  2 + 3  =  log102 + log103 

we can use letters: 

log(a·b)  =  loga + logb which is rule number 1 

Instead of numbers in example II 

log(102:103)  =  2 - 3  =  log102 - log103 

we can use letters 

log (
𝑎

𝑏
)  =  log a - log b which is rule number 2 

The last rule is, if the power number not is 10 (or e). We derive it  

log ax  =  log(10log a)x  =  log10xlog a  =  x·log a          

log ax  =  x·log a  which is rule number 3 

There are only these calculation rules for logarithms. 
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The natural logarithm 

Or the e-logarithm. 

Everything is just like the 10s logarithm, only now the base 

number is e 

    ex        …  e-2     e-1     e0      e1     e2     e3     e4 …        lnex 

     x        …  -2      -1      0      1      2       3      4   …       x 

and we call it  ln x  which stands for ”logarithm natural” or more 

idiomatic: ”the natural logarithm” since it is found in nature just 

like its base number e. It is clear that we go from row 2 to row 1 

by saying: 

x is transferred to ex   or 

x          ex  

When we go from row 1 to row 2, we now decide to say: 

ln e x          x so, we define that ln e x  =  x 

In words: The natural logarithm of ex is x, - and then we may 

insert a number instead of x. 

Now we can solve the equation 

y  =  ex      by having ln on either side 

ln y  =  ln ex   

ln y  =  x   

x  =  ln y  

If y is a known number, for instance e2, we can read in the table, 

we just made, that  ln e2 = 2  and finish by having  

x  =  2 
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Our table only contains a few numbers, but fine tables are 

programmed into CAS. For instance, we may enter: 

ln 37  ≈  3.61 

Please note that all numbers in row 1 are positive. We can only 

find the logarithm of numbers bigger than zero (> 0).  

---------- 

The calculation rules are 

ln (a·b)  =  ln a + ln b which is rule number 1 

ln (
𝑎

𝑏
)  =  ln a - ln b which is rule number 2 

ln ax  =  x·ln a which is rule number 3 

 

More theory 

It appears above, that  10x  and  log x  are inverse functions 

log10x  =  x and 10log x  =  x 

Correspondingly,  ex  and  ln x  are inverse functions 

lnex  =  x  and eln x  =  x 

We can display it in a diagram, where  y = x  is also shown for 

comparison, and we see that  y  =  x  is the line of symmetry, so, 

the curves may be mirrored in this symmetry line.  
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Here we only write the right side of the expression. It cannot be 

misunderstood so it is allowed. 

The exponential functions/curves lean more and more, while the 

logarithm functions/curves lean less and less when x increases. 

---------- 

Other notations for the logarithm function to the power of 2:  

(log x)2  =  log2x (ln x)2  =  ln2x 

In this book, we use the first notation. Some other books and 

tables may use the other notation. 

 

Examples using calculation rule 1 

The sign  ≈  means CAS was used. 

log 3 + log 4  =  log (3 · 4)  =  log 12  ≈  1.079  (log 12 is precise) 
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log 4 + log 25  =  log (4 · 25)  =  log 100  =  10 

log (
2

3
) + log (

3

4
)  =  log (

2

3
·  

3

4
)  =  log (

2

4
)  ≈  - 0.301  

log (10 · √10 )  =  log 10 + log √10   =  1 + log √10   =  1.5  

ln 3 + ln 4  =  ln (3 · 4)  =  ln 12  ≈  2.48 

ln 4 + ln 25  =  ln (4 · 25)  =  ln 100  ≈  4.605 

ln (
2

3
) + ln (

3

4
)  =  ln (

2

3
·  

3

4
)  =  ln (

2

4
)  ≈  - 0.693  

ln (e · √𝑒 )  =  ln e + ln √𝑒   =  1 + ln √𝑒   =  1.5  

 

Examples using calculation rule 2 

log 3 - log 4  =  log (
3

4
)  ≈  - 0.125  

log 4 - log 25  =  log (
4

25
)  ≈  - 0.796  

log (
10

√8
)  =  log 10 - log √8   =  1 - log √8   ≈  0.549  

ln 3 - ln 4  =  ln (
3

4
)  ≈  - 0.288  

ln 4 - ln 25  =  ln (
4

25
)  ≈  - 1.83  

ln (
𝑒

√8
)  =  ln e - ln √8   =  1 - ln √8   ≈  - 0.0397  

 

Examples using calculation rule 3 

log 34  =  4·log 3  ≈  1.91  

log 102x  =  2x·log 10  =  2x·1  =  2x 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       144 
 

1 + log √10   =  1 + log 100,5  =  1 + 0.5·log 10  =  1 + 0.5·1  = 1.5 

log 103 - log 102  =  3 - 2  =  1 

ln 34  =  4·ln 3  ≈  4.39  

ln e2x  =  2x·ln e  =  2x·1  =  2x  

1 + ln √𝑒   =  1 + ln e0,5  =  1 + 0,5·ln e  =  1 + 0.5·1  =  1.5 

  

Examples with equations 

3x  =  27    ln 3x  =  ln 27  

x·ln 3  =  ln 33  x·ln 3  =  3·ln 3  

x  =  3 

 

1,8-2x  =  4   ln (1,8-2x)  =  ln 4  

-2x·ln 1.8  =  ln 4  x  =  
ln 4

−2·ln 1.8
   

x  ≈  - 1.18 

 

We will isolate time, t, in the formula for exponential growth 

y  =  b ·ekt    ekt  =  (
𝑦

𝑏
)     

ln ekt  =  ln (
𝑦

𝑏
)    kt  =  ln (

𝑦

𝑏
)    

t  =  
1

𝑘
 · ln (

𝑦

𝑏
)   

For instance, that might be the time for growth of a certain 

bacteria.   
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More theory 

 

Both functions shown, have the equation   f(x)  =  b · cx =  b · akx 

With exponential functions, it is often nice to know when things 

are doubled or halved. Often, time is on the first axis, so the 

doubling constant is denoted  T2  , and the halving constant is 

denoted  T½  , and we can derive formulas for their calculation. On 

the second axis we here have N for number. The start condition is 

f(t2)  =  2 · f(t) => b · 𝑐𝑡2 =  2 · b · 𝑐𝑡   

𝑐𝑡2 =  2 · 𝑐𝑡    𝑐𝑡2 -t  =  2   

𝑙𝑛 𝑐𝑡2 -t  =  ln 2  (t2 - t) ln c  =  ln 2  

t2 - t  =  
ln 2

ln 𝑐
    T2  =  

ln 2

ln 𝑐
=

ln 2

ln 𝑎𝑘
 and 

f(t½)  =  
1

2
 · f(t) => b · 𝑐𝑡2 =  

1

2
 · b · 𝑐𝑡  

𝑐𝑡2 =  
1

2
 · 𝑐𝑡    𝑐𝑡2 -t  =  

1

2
   

𝑙𝑛 𝑐𝑡2 -t  =  ln 
1

2
  (t2 - t) ln c  =  ln 

1

2
  

t2 - t  =  
ln 

1

2

ln 𝑐
    T½  =  

ln 
1

2

ln 𝑐
=

ln 
1

2

ln 𝑎𝑘
   

Exponential positive 

growth / exponentially 

increasing 

Exponential negative 

growth / exponentially 

decreasing 
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Other functions 

Here we will briefly discuss some more rare functions. 

 

The hyperbola 

The hyperbola (Greek: exaggeration) has the equation 

x · y  =  k        y  =  
𝑘

𝑥
   or x  =  

𝑘

𝑦
  

where k is a constant. 

It is seen that neither x nor y can be 0 - the curve cannot pass        

x = 0 or y = 0 , so the x-axis and the y-axis become asymptotes 

(which means: no coincidence) to the function (curve). The curve 

still approaches the axis, but will never reach it. 

 

We meet the hyperbola in Boyle-Mariotte’s law (physics) in the 

form 

Hyperbola:  y = 
3

𝑥
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p · V  =  k  only relevant in the first quadrant 

which stands for 

pressure · volume  =  constant  

valid at constant temperature.  

Since neither the absolute pressure nor the volume can be negative 

the curve is only relevant in the first quadrant. 

---------- 

In techniques, the hyperbola shape applies for special grinded 

magnetic sensors - and more.   

 

The third degree polynomial 

The third degree polynomial comes in many versions, but the 

basic function is 

y  =  x3 

 

Third degree polynomial   

y = x3 
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A few laws of nature are third degree equations. For instance 

Kepler’s 3. Law which states that the period, squared, is 

proportional to its average distance to the sun, to the power of 

three.  

T2  =  k · r3  only relevant in the first quadrant 

 

The fourth degree polynomial 

y  =  x4 

  

A fourth degree polynomial is rare. An example in physics is  

Stefan-Boltzmann’s Law of radiation which states that the 

radiation intensity from a black body equals a constant times the 

temperature (in Kelvin) to the power of four: 

I  =  k · T4  only relevant in the first quadrant  

 

Fourth degree 

polynomial   y = x4 
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Polynomial fraction function 

Some functions are so rare that you may not meet them. Yet, they 

may possess interesting characteristics, which calls for a brief 

remark. For instance this polynomial fraction function: 

y  =  
x+1

𝑥−1
 

The denominator cannot be zero, so x cannot be 1. Therefore the 

curve cannot pass  x = 1  which consequently becomes asymptote. 

y = 0  must be if  x = -1  since the numerator thus will be 0. 

Thus, some things we are able to see in advance, - and displayed: 

 

It is observed, that  x = 1  is a vertical asymptote. Furthermore, we 

have a suspicion that  y = 1  is a horizontal asymptote. We will 

test that by inserting  y = 1 in the equation: 

y  =  1 => x - 1  =  x + 1  0  =  2 

Polynomial fraction      

y = 
x+1

𝑥−1
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which is false, and therefore y cannot be 1. This means that the 

curve cannot pass  y  =  1 , which therefore is a horizontal 

asymptote.  

 

An example of a special third degree polynomial 

Finally, a third degree polynomial, which is interesting because it 

has a local maximum, and a local minimum:  

y  =  x3 - 4x2 + 2 

 

We can easily read the local maximum point: (0, 2) 

The local minimum can only be read approximately.  

Later, in differential calculation, we shall see how these points 

may be calculated precisely.  

Third degree polynomial  

y = x3 – 4x2 + 2 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       151 
 

Partly defined functions 

                 y 

              f1                f3 

      

              f2   

             x 

          x1   x2   

Then function shown is in three parts, where each part is defined 

in an interval 

f1(x)  =  function equation in the interval: ]- ∞ ; x1[ 

f2(x)  =  function equation  in the interval: [x1 ; x2 ] 

f3(x)  =  function equation  in the interval: ]x2 ; ∞[ 

The parts also may have more different names like f, g and h.  
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Part 3. Differentiation and Integration  

Introduction 

Now we are going to round the sharp, but also very beautiful, 

corner of mathematics. We are namely going to investigate 

quantities that change, as well as how they change.  It leads us to 

new ways of calculation. Previously, we expanded from the four 

basic arithmetic operations to the trigonometric functions (sin, 

cos, tan) and the logarithms. Now we expand even further, and the 

only way to understand this new way of calculation is by 

understanding the proofs. Differential and integral calculus must 

be understood through proofs.  

First, however, a little mathematical philosophy and history. The 

ancient Greeks found that not everything proves. We need a basic, 

which they called axioms - which means basic. From basics and 

onwards, we have to prove that what we do is correct.  

A point has no extent. Does it exist then? Yes, is the answer, and 

thus we have an axiom. If a point has no extent, there must be an 

infinite number of points in an area? Yes, - this is another axiom.  

If the area is bigger, will it contain even more points? Yes. Can 

something infinite be bigger than some other thing which is also 

infinite? Yes.  

A line has no width, nor does a parabola, a circle or any other 

curve. Here we have a significant difference between mathematics 

and other sciences for instance physics. Imagine a spherical ball 

lying on a plane. In mathematics, there is only contact in one 

point. In physics, that would produce an infinite surface pressure, 

which clearly is not so, - no materials could take that. The 

physical fact is, that both the round ball and the plane will become 
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deformed and form a contact area - not just a point - and thereby 

form a surface pressure, which can be calculated and measured. 

The ancient Greeks were probably not the first to consider these 

subjects, but we know, that they thought about it. Can we talk 

about the velocity in a point or at a certain point in time? Can we 

talk about the reaction speed of a chemical reaction at a certain 

point in time? Or for biological growth? And, can we make 

calculations of it?   

The answer is yes and yes. The ancient Greeks did not succeed in 

finding the mathematical basis. It was not until the sixteen 

hundreds they succeeded in making mathematical proofs. It 

happened almost at the same time for the physicist Isaac Newton 

and the mathematician Gottfried Leibnitz. As far as we know, they 

did not know one another at the time, and their approaches were 

different. Newton needed novel mathematics to solve physical 

problems, while Leibnitz was a theoretical mathematician.  It is all 

about calculating differences/changes in the near vicinity of a 

point, which is why it has the name: differential calculus. A more 

detailed description of the technical term will follow.  

We will now do the long haul of proving differential and integral 

calculus, and see how much it enables us to calculate, which is 

comprehensive.  

We will not prove everything, but pretty much, though, - the most 

essential.  

---------- 

Sometimes, differential and integral calculus are called infinitesimal calculus, 

since we do calculation on infinitesimally small parts when we differentiate, 

and recollect the infinite number of infinitesimally small parts when we 

integrate.  
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Differential calculus 

The slope of a function/curve in a coordinate system describes the 

change of the quantity in question. If the slope is zero (a 

horizontal line), there is no change, - we have a constant y-value 

regardless of the x-value.  

Let us start by considering the linear function, where the slope 

does not change no matter where we are on the line. In other 

words, the slope is the same for all x regardless of having a small 

change Δx1 or a big change Δx2  

 

All other functions have different slopes in different places, for 

instance the parabola:  

Straight line with the 

same slope everywhere:   
Δ𝑦2

𝛥𝑥2
=  

Δ𝑦1

𝛥𝑥1
 = 𝑎 
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It is observed, that going from left to right, the parabola shown has 

a negative slope that decreases as we move towards the vertex, 

zero slope at the vertex, and then a positive and increasing slope 

as we move further to the right.   

The human eye is sharp so we are able to sketch a tangent in a 

point on the parabola. The tangent only touches the parabola in 

one point. It is a tangent, and we can read its slope with some 

uncertainty. Yet, we would like to be precise, so can we find the 

slope of the tangent by calculation? 

If we can determine the slope of the tangent, we can also 

determine the slope of the curve in that point. They are the same. 

Oh, but a point has no extent, so how can we talk about the slope 

of a curve in a point, and how can we calculate it!?  

In the next diagram we have a parabola (it could be any curve)  

with a secant intersecting in points P0 and P. 

Parabola with three 

tangents 
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Also, there is a blue helping triangle showing the slope of the 

secant  
Δy

Δx
  

Now we imagine point P sliding down the parabola. Thereby the 

secant will slide with it and have a smaller slope when 

approaching point P0. When we have almost reached P0, the secant 

almost becomes a tangent in P0. Δx also gets smaller and is now 

called δx, while Δy becomes δy. 

We have now moved from a macro world where Δx and Δy are 

big and visible (which is why we use the Greek letter capital Delta, Δ) to a 

Secant 

Tangent 

Δy = yend - ystart    a difference in y 

Δx = xend – xstart   a difference in x 
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micro world where δx and δy are infinitely small (which is why we 

use the Greek letter small delta, δ).  

Later, d replaced δ, which is the modern small delta in our 

alphabet. Thus, we have seen this:  

 P slides down the parabola and almost becomes coincident 

with P0 

 The Secant almost becomes tangent 

 Δx becomes dx 

 Δy becomes dy 

 Secant slope  
Δy

𝛥𝑥
  becomes tangent slope  

dy

dx
  

Even though P and P0 are very, very close, they are not the same 

point. Thus, we have no problem with the axiom stating that a 

point has no extent, and therefore, in practice, we may talk about 

the slope of a function in a point.  

macro  Δy

𝛥𝑥
  is called the difference quotient (= difference fraction)  

micro  
dy

dx
  is called the differential coefficient (= derivative) 

In brief: 

Δy

𝛥𝑥
  =  secant slope  =  difference quotient  

dy

dx
  =  tangent slope  =  differential coefficient 

 

The next step is to calculate the tangent slope  
dy

dx
  for known 

functions by following the same procedure as just mentioned.  

 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       158 
 

Proofs of differential calculus 1 

There are some methods. We will use the three-step-rule: 

1. Calculate  Δy 

2. Calculate  
Δy

𝛥𝑥
   

3. Let Δx go towards zero to find  
dy

dx
   

We will begin with a horizontal line, of which we already know 

that the slope is 0. Thus, we expect to find a differential 

coefficient of 0. 

 

The horizontal line 

y  =  b   or   y  =  constant 

 

1. Calculate Δy   here:  0 

2. Calculate  
Δy

𝛥𝑥
     here:  0 

Horizontal line   y = 3 

No slope   a = 0 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       159 
 

3. Let Δx go towards zero to find  
dy

dx
  here:  0 

So, when we differentiate a constant we yield 0, i.e. slope = 0 

In other words: The difference of a constant is 0, it does not 

change. As expected. 

 

The straight line 

Then we consider the straight line, which we already know has the 

same slope (namely a), and thus the same differential coefficient 

everywhere. 

y  =  ax + b  or    f(x)  =  ax + b 

 

The diagram displays a straight line and a helping triangle with 

one corner at the x-value  x0. Further to the right the x-value 

becomes  x0 + Δx  (since we are the distance Δx further to the 

right).  
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The corresponding y-values are now called the function values:  

f(x0)  and  f(x0 + Δx) 

 

Three-step-rule 

1. Calculate  Δy 

Δy  =  f(x0 + Δx) - f(x0)  => 
And with our x-values inserted into the line equation  y = ax + b 

Δy  =  [a(x0 + Δx) + b] - [ax0 + b]  

Δy  =  a·Δx 

   

2. Calculate  
Δy

𝛥𝑥
  

 

 Δy

𝛥𝑥
  =  

a·Δx

𝛥𝑥
   =  a 

 

3. Let Δx go towards zero to find  
dy

dx
  => 

 

Δx was reduced from the equation in point 2, so Δx has no 

influence on the slope. It becomes 
dy

𝑑𝑥
  =  

Δy

𝛥𝑥
   =  a 

It corresponds nicely with what we already know, namely 

that a straight line has the same slope everywhere. Here we 

call it a, at other times we may call it c or k to show that it is 

a constant.  

 

The tangent slope for a straight line - which equals the differential 

coefficient  
dy

dx
  for a straight line - equals the number (the 

constant) a.  

The differential coefficient is also called f´(x). So:   
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dy

dx
  =  f´(x)  =  a the reason for also using f´(x) follows later 

 

The parabola 

y  =  ax2 + bx + c  f(x)  =  ax2 + bx + c 

 

Three-step-rule 

1. Calculate Δy 

Δy  =  f(x0 + Δx) - f(x0) 

and with the values of a parabola 

Δy  =  (a(x0+Δx)2 + b(x0+Δx)+c) - (ax0
2+bx0+c) 

Δy  =  (a(x0
2+(Δx)2 + 2x0Δx)+bx0+bΔx+c) - (ax0

2+bx0+c) 

Δy  =  ax0
2 + a(Δx)2 + 2ax0Δx + bx0 + bΔx + c - ax0

2- bx0 - c 

Δy  =  a(Δx)2 + 2ax0Δx + bΔx  

 

2. Calculate  
Δy

𝛥𝑥
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Δy

𝛥𝑥
  =  

𝑎(𝛥𝑥)(𝛥𝑥) + 2𝑎·𝑥0·𝛥𝑥 + 𝑏𝛥𝑥

𝛥𝑥
  =  aΔx + 2ax0 + b 

 

3. Let Δx go towards zero to find  
dy

dx
  => 

dy

𝑑𝑥
  =  2ax + b since x0 changes for x to describe all values of x, 

not just the one we named x0 

The tangent slope for a parabola, which equals the differential 

coefficient  
dy

dx
 , thus becomes an equation:   

 
dy

𝑑𝑥
  =  f´(x)  =  2ax + b   

a and b are known constants, while x is variable. 

The tangent slope depends on x. In other words: the tangent slope 

depends on where we are on the parabola. 

 

The square root function 

y  =  √𝑥   or better     y  =  x½         f(x)  =  x½ 
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Three-step-rule 

1. Calculate Δy 

Δy  =  f(x0 + Δx) - f(x0) 

and with the values of a square root function 

Δy  =  (x0 + Δx)½ - x0
½ 

 

2. Calculate  
Δy

𝛥𝑥
  

 

Δy  =  
(𝑥0 + 𝛥𝑥)½ −𝑥0 ½

𝛥𝑥
  

 
Numerator and denominator multiplied by  ((x0 + Δx)½ + x0

½) 

 

 Δy  =  
((𝑥0 + 𝛥𝑥)½ − 𝑥0

½)

𝛥𝑥
 · 

((𝑥0 + 𝛥𝑥)½+ 𝑥0
½)

((𝑥0 + 𝛥𝑥)½+ 𝑥0
½) 

 

 

and we use a square rule 

 

Δy  =  
(𝑥0+ 𝛥𝑥) − 𝑥0

𝛥𝑥·((𝑥𝑜 + 𝛥𝑥)½+ 𝑥0
½) 

    

 

Δy  =  
𝛥𝑥

𝛥𝑥·((𝑥0 + 𝛥𝑥)½+ 𝑥0
½) 

    

 

Δy  =  
1

(𝑥0 + 𝛥𝑥)½+ 𝑥0
½ 

   

  

3. Let Δx go towards zero to find  
dy

dx
  => 

 
dy

𝑑𝑥
  =  f´(x)  =  

1

2 𝑥½ 
  =  

1

2
 x-½   x0 changed to x  
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The tangent slope depends on x. In other words: the tangent slope 

depends on where we are on the curve. 

 

Polynomials 

y  =  xn                  f(x)  =  xn  n is also called a 

We have just seen the differential coefficient of two polynomials: 

the parabola and the square root function. What about the other 

polynomials    (x3, x4, x2,3,…) ? 

If we simplify to  y  =  x2  the differential coefficient will be: 

 y  =  x2     => 
dy

𝑑𝑥
  =  2x1  =  2x 

and for the square root function 

y  =  x½     => 
dy

𝑑𝑥
  =  

1

2
 x-½ 

In practice these two functions are differentiated by ”putting the 

exponent in front as a factor and let the exponent drop 1”. It is 

easy to see for the parabola: ”2 put in front, and let the exponent 

drop:  2 - 1 = 1”. For the square root function: ”½ put in front, and 

the exponent becomes  ½ - 1 = -½ ”. 

All polynomials are differentiated the same way: 

y  =  xn     => 
dy

𝑑𝑥
  =  n·xn-1  the power rule 

This we will not prove. 

 

The natural exponential function 

y  =  ex     f(x)  =  ex 
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Three-step-rule 

1. Calculate Δy 

Δy  =  f(x0 + Δx) - f(x0) 

and with the values of the function 

y  =  exo+Δx - exo  

 

2. Calculate  
Δy

𝛥𝑥
  

 

 
Δy

𝛥𝑥
  =  

𝑒𝑥𝑜+𝛥𝑥− 𝑒𝑥𝑜

𝛥𝑥
  =  exo · 

𝑒𝛥𝑥− 1

𝛥𝑥
   

 

3. Let Δx go towards zero to find  
dy

dx
   

In the expression we found in point 2, we see that  exo does 

not change if Δx goes towards 0.  
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If we look at the fraction  
𝑒𝛥𝑥− 1

𝛥𝑥
  and let Δx go towards 0, 

𝑒𝛥𝑥  will go towards 1, and thus the numerator will go 

towards 0. 

The denominator will also go towards 0. 

However, we cannot see which value the whole fraction 

goes towards. We need more information: 

We get that from the very definition of the function  y = ex  

where: 

x0 = 0   inserted into   exo · 
𝑒𝛥𝑥− 1

𝛥𝑥
   is a slope of 1: 

x0 = 0        =>  1 · 
𝑒𝛥𝑥− 1

𝛥𝑥
  =  1 

That can only happen if the fraction goes towards 1. 

Combined   exo · 
𝑒𝛥𝑥− 1

𝛥𝑥
   goes towards   exo · 1   when  Δx 

goes towards 0   => 

 
dy

𝑑𝑥
  =  f´(x)  =  ex  x0 changed to x  

e is Euler’s number (the base number for the natural logarithm) 

which is known, while x is variable. 

The tangent slope depends on x. In other words: the tangent slope 

depends on where we are on the curve. 

Please note that the tangent slope of the function ex is ex 

f(x)  = ex       and   tangent slope  =   
dy

𝑑𝑥
  =  f´(x)  =  ex   

No other function has this characteristic. 

 

The natural logarithm 

y  =  ln x   or f(x)  =  ln x 
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Three-step-rule 

1. Calculate Δy 

Δy  =  f(x0 + Δx) - f(x0) 

and with the values of the function 

ln (x0 + Δx) - ln x0  =  ln (
𝑥0+𝛥𝑥

𝑥
) 

  

2. Calculate  
Δy

𝛥𝑥
  

 
Δy

𝛥𝑥
  =  

 ln (
𝑥0+𝛥𝑥

𝑥0
)

𝛥𝑥
  =  

 ln (1+ 
𝛥𝑥

𝑥0
)

𝛥𝑥
   

Here we must separate the fraction (
𝛥𝑥

𝑥0
) to see, what 

happens when we let Δx go towards 0. We do so by calling 

the fraction k: 

 

 
𝛥𝑥

𝑥0

  =  k  Δx  =  kx0  => 
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Δy

𝛥𝑥
  =  

 ln (1+ 𝑘)

𝑘𝑥0
  =  

1

𝑥0
 · 

 ln (1+ 𝑘)

𝑘
  

 

3. Let Δx go towards zero to find  
dy

dx
  

Now we see that when Δx goes towards 0, k will also go 

towards 0. This means that both numerator and denominator 

in  
 ln (1+ 𝑘)

𝑘
  go towards 0, but we cannot see, what value the 

fraction goes towards, so we need more information: 

We get this by remembering that the ln-function is the 

inverse of the ex-function, and thus has the slope 1 for        

x0 = 1: 

x0 = 1   inserted into  
1

𝑥0
 · 

 ln (1+ 𝑘)

𝑘
   is a slope of 1: 

x0 = 1      =>  
1

1
 · 

 ln (1+ 𝑘)

𝑘
  =  1 

This can only happen if the fraction goes towards 1. 

Combined  
1

𝑥0
 · 

 ln (1+ 𝑘)

𝑘
   goes towards  

1

𝑥0
 ·1  when k and 

thus Δx goes towards 0  => 

dy

𝑑𝑥
  =  f´(x)  =  

1

𝑥
   x0 changes to x  

The tangent slope depends on x. In other words: the tangent slope 

depends on where we are on the curve. 

---------- 

Generally, another way to write step 3 is: 

lim 
𝛥𝑦

𝛥𝑥
 

𝛥𝑥→0
 =  

dy

𝑑𝑥
   

lim stands for limes, which is Latin and means limit. Therefore, it says:  

The limit value of the difference quotient  
Δy

𝛥𝑥
  when  Δx  goes towards 0 is the 

differential coefficient  
dy

𝑑𝑥
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Notations 

A differential coefficient may be written in many ways. One way 

is preferable in some cases, another is preferable in other cases. 

The core of it is:  

𝑑𝑦

𝑑𝑥
  =  differential coefficient  =  equation for the tangent slope 

and then all the other notations: 

A function is often called y or y(x), or f(x), or just f. Therefore, the 

differential coefficient is often called y´, or f´(x), or f´.  

If we only use y or f, it is understood that we know what is the name of the 

unknown - often x. The variable may, of course, be something else, like for 

instance t for time, and the function may be called anything other than f. 

In CAS we often have  
d

𝑑𝑥
 y  or  

𝑑

𝑑𝑥
 f(x)  where the 

function/equation also may be inserted, for instance  
𝑑

𝑑𝑥
 (x2+x). 

 Combined we have 

 
𝑑𝑦

𝑑𝑥
  =  

d

𝑑𝑥
 y  =  

𝑑

𝑑𝑥
 f(x)  = y´ =  f´(x)  =  f´  

They all express the same, namely the differential coefficient, 

which means the equation for the tangent slope, - which inform us 

about how the function changes.  

In words 

Differential coefficient  =  the first derivative 

(as we shall see later, we can differentiate one more time and obtain the 

second derivative).  
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Differentiation and the four basic arithmetic operations 

Maybe we have a function in parts combined by the four basic 

arithmetic operations (sum, difference, product, division). How do 

we find the equation for the slope of the function, i.e. the 

differential coefficient, in such a case?  

Here the whole function is called y or f, while the parts of a 

function are called u and v, then mistakes should be avoided. 

 

Sum (addition).  

y(x)  =  u(x) + v(x)  or brief 

y  =  u + v    => is differentiated to 

y´ =  (u + v)´ =  u´+ v´ 

The function is differentiated part by part  

y  =  u + v  

if x changes by Δx, the whole function y will have a change of Δy, 

while the parts of the functions will have a change: Δu and Δv  => 

y + Δy  =  (u + Δu) + (v + Δv)  

u + v + Δy  =  u + Δu + v + Δv  

Δy  =  Δu + Δv  => from macro to micro 

dy  =  du + dv    divided by dx 

𝑑𝑦

𝑑𝑥
  =  

𝑑𝑢

𝑑𝑥
 + 

𝑑𝑣

𝑑𝑥
     or  

y´ =  u´+ v´     

y´ =  (u + v)´ =  u´+ v´  thus, differentiation part by part 
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Example 

y  =   3x2 + ln x => y´ =  6x + 
1

x
  

 

Difference (subtraction).  

y(x)  =  u(x) - v(x)  or brief 

y  =  u - v     => differentiated 

y´ =  (u - v)´ =  u´- v´ 

The function is differentiated part by part.  

The proof is similar to the sum proof, only v is minus. 

Example 

y  =   3x2 - ln x => y´ =  6x - 
1

x
  

 

Product (multiplication) 

y  =  u · v     => differentiated 

y´ =  (u·v)´ =  u´·v + u·v´ which is called the product formula 

Proof:  

y  =  u · v  

if x has a change of Δx, the whole function y will have a change 

of Δy, while the parts of the function will change: Δu and Δv  => 

y + Δy  =  (u + Δu) · (v + Δv)  

u·v + Δ(u·v)  =  u·v + u·Δv + Δu·v + Δu·Δv  

Δ(u·v)  =  u·Δv + v·Δu + Δu·Δv =>  
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since  Δu·Δv  is infinitesimal (limitless small) the part may be 

omitted. So, when we go from macro to micro, we have 

d(u·v)  =  u·dv + v·du  => divided by dx 

 
𝑑(u·v)

𝑑x
  =  u ·

𝑑v

𝑑x
 + v · 

𝑑u

𝑑x
  => 

y´ =  (u·v)´ =  u·v´+ v·u´ the product formula 

Example 

y  =  3x2 · ln x => y´ =  3x2 · 
1

x
 + 6x · ln x 

 

Division 

y  =  
u

v
  => differentiated 

y´ =  (
u

v
)

′
 =  

u´·v − v´·u

v2
     which is called the quotient formula 

Proof:  

y  =  
u

v
  

if x has a change of  Δx , the whole function y will have a change 

of  Δy , while the parts of the function will change: Δu and Δv  => 

y + Δy =   
u + Δu

v + Δv
   => 

u

v
 + Δ(

u

v
) =   

u + Δu

v + Δv
    

Δ(
u

v
)  =   

u + Δu

v + Δv
 - 

u

v
  =  

v(u + Δu)

v(v + Δv)
 - 

u(v+ Δv)

v(v+ Δv)
  =  

v·u + v·Δu−u·v−u·Δv

v(v + Δv)
     

Δ(
u

v
)  =   

v·Δu−u·Δv

v(v + Δv)
   since  v·Δv  is infinitesimal we have 
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Δ(
u

v
)  =   

v·Δu−u·Δv

v2
    => from macro to micro 

d(
u

v
)  =   

v·du−u·dv

v2
     divided by dx 

y´ =  
𝑑

𝑑x
(

u

v
)  =  

v·
𝑑u

𝑑𝑥
−u·

𝑑v

𝑑𝑥

v2
   

y´ =  (
u

v
)

′
 =  

u´·v − v´·u

v2
     the quotient formula 

Example 

y  =  
3x2

ln 𝑥
   => 

6x · ln x  − x−1 · 3x2

(ln x)2
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Differentiation of composite functions 

If x has ”roles” more than the four rules of arithmetic operations, 

we talk about a composite function. 

The easiest way of differentiating a composite function is by the 

chain rule, which we derive  

𝑑y

𝑑x
  =  

𝑑y · 𝑑u

𝑑x · 𝑑u
   extension by factor du 

𝑑y

𝑑x
  =   

𝑑y · 𝑑u

𝑑u · 𝑑x
  

𝑑y

𝑑x
  =  

𝑑y 

𝑑u
 · 

𝑑u

𝑑x
   the chain rule  

Thus we split the function in the two ”roles” x has, differentiate 

one by one and gather them by multiplication.  

 

Examples 

1. 

y  =  (x2 + 1)3 

here we chose to call the ”inner” function u    => 

𝑑u

𝑑x
  =  

𝑑(𝑥2+1)

𝑑x
  =  2x + 0 

and the outer function y   => 

𝑑y

𝑑u
  =  

𝑑(𝑢3)

𝑑u
  =  3u2  =  3(x2 + 1)2 

combined 

2x · 3(x2 + 1)2 which is reduced to           6x·(x2 + 1)2 

---------- 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       175 
 

Or briefly: 

y  =  (x2 + 1)3 

diff. inner 2x 

diff. outer 3(x2 + 1)2 

combined 2x · 3(x2 + 1)2  

 

2. 

y  =  ln (x2 - x)    

diff. inner 2x - 1  

diff. outer 
1

 𝑥2− x
   

combined 
2𝑥−1

 𝑥2− x
      

---------- 

For information, the chain rule may be expanded to for instance 

 
𝑑y

𝑑x
  =  

𝑑y 

𝑑u
 · 

𝑑u

𝑑v
 · 

𝑑𝑣

𝑑x
  

which makes it even more useful. However, we do not take it 

further.  

 

More theory 

With respect to the notation in some tables, we consider the 

composite function once more by using the chain rule and then 

alter the notation 

𝑑y

𝑑x
  =  

𝑑y 

𝑑u
 · 

𝑑u

𝑑x
   => 
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𝑑y

𝑑x
  =  

𝑑(𝑓(𝑥)) 

𝑑(g(x))
 · 

𝑑(g(x))

𝑑x
   

y´  =  
𝑑 

𝑑(g(x))
 f(x) · 

𝑑

𝑑x
 g(x)  

(f(g(x)))´  =  f´(g(x)) · g´(x) 

Some tables use f and g for both the whole function as well as for 

the parts of the function as is the case here.  

As we can see, the derivation is a bit troublesome, but we end at 

the same: we just have to differentiate inner and outer and 

multiply the two.  
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Proofs of differential calculation 2 

Utilizing the novel formulas just achieved, we can now perform 

some more proofs. 

 

Differentiation of ekx 

y  =  ekx  or  f(x)  =  ekx 

is differentiated as a composite function: 

”inner”, which is  kx  diff. to  k 

”outer”, which is the  e  function diff. to ekx 

combined    
𝑑y

𝑑x
  =  f´(x)  =  k·ekx 

 

The exponential function 

y  =  ax  or  f(x)  =  ax 

rearranged  y  =  (eln a)x        y  =  ex·ln a 

and differentiated as a composite function: 

”inner”, which is  x·ln a  diff. to  ln a 

”outer”, which is the  e  function diff. to ex·ln a  =  ax   

combined    
𝑑y

𝑑x
 = f´(x)  =  ax·ln a 

 

The sine function 

y  =  sin v   f(v)  =  sin v        angle v in degrees 

or 
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y  =  sin x   f(x)  =  sin x        angle x in radian 

 

Again we will use the three-step-rule: 

Three-step-rule 

1. Calculate Δy 

Δy  =  f(x0 + Δx) - f(x0) 

and with the values of the function 

sin (x0 + Δx) - sin x0 

  

2. Calculate  
Δy

𝛥𝑥
     

  

 
Δy

𝛥𝑥
  =  

sin (𝑥0 + Δx) − sin  𝑥0 

Δx
   

 

It can be shown that (we do not show it, we just use it):  

sin x - sin y  =  2·cos 
𝑥+𝑦

2
 · sin 

𝑥−𝑦

2
  => here 
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sin (x0 + Δx) - sin x0  =  2·cos 
(𝑥0+𝛥𝑥)+𝑥0

2
 · sin 

(𝑥0+𝛥𝑥)−𝑥0

2
  

sin (x0 + Δx) - sin x0  =  2·cos (x0 + 
𝛥𝑥

2
)·sin 

𝛥𝑥

2
   

inserted 

Δy

𝛥𝑥
  =  

2·cos ( 𝑥0+ 
𝛥𝑥

2
)·sin 

𝛥𝑥

2

𝛥𝑥
  

 

We divide by 2 in numerator and denominator  

 

Δy

𝛥𝑥
  =  

cos (𝑥0 + 
𝛥𝑥

2
)·sin 

𝛥𝑥

2
𝛥𝑥

2

  

 

and split in two  

 

Δy

𝛥𝑥
  =  cos (x0 + 

𝛥𝑥

2
) · 

sin 
𝛥𝑥

2
𝛥𝑥

2

  

 

3. Let Δx go towards 0 to find  
dy

𝑑𝑥
  

cos (x0 + 
𝛥𝑥

2
)    goes towards  cos x0  

sin 
𝛥𝑥

2
𝛥𝑥

2

   goes towards 1, since 
𝛥𝑥

2
 in the unit circle is both an 

angle in radians as well as the angles arc length. When Δx goes towards 0 (the 

angles gets smaller) sine of the angle and the arc length will go towards the same 

value. See the figure: 

 

Assisting figure 

angle 
𝛥𝑥0

2
 rad 
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Combined we will go towards  cos x0  => 

 

 
dy

𝑑𝑥
  =  f´(x)  =  cos x  x0 changes to x  

The tangent slope depends on the angle x (here in radians). In 

other words: The tangent slope depends on where we are on the 

sine curve. 

 

The cosine function 

y  =  cos x      f(x)  =  cos x 

sine and cosine are related, and one might be rewritten as the 

other. Here is an example: 

 

The angle x (here in radians) is marked relative to the x-axis and 

related to the y-axis. It is seen that  

cos x  =  sin (
𝜋

2
− 𝑥) 

So, instead of differentiating  cos x,  we can differentiate            

sin (
𝜋

2
− 𝑥). We do it by differentiating outer and inner 

Unit circle in 1.qua. 
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dy

𝑑𝑥
  =  cos (

𝜋

2
− 𝑥)·(-1)  =  - cos (

𝜋

2
− 𝑥) 

as seen from the figure equals  - sin x => 

 
dy

𝑑𝑥
  =  f´(x)  =  - sin x 

The tangent slope depends on the angle x (here in radians). In 

other words: The tangent slope depends on where we are on the 

cosine curve. 

 

The tangent function 

y  =  tan x              f(x)  =  tan x                   angle x in radians 

We use the definition of tangent 

y  =  tan x  =  
sin 𝑥

cos 𝑥
   

and the quotient formula 

 
𝑑𝑦

𝑑𝑥
  =  f´(x)  =  

(sin 𝑥)´· cos 𝑥−(cos 𝑥)´·sin 𝑥

(cos 𝑥)2
  =  

cos 𝑥· cos 𝑥−(−sin x)·sin 𝑥

(cos 𝑥)2
  

   =  
(cos 𝑥)2+ (sin 𝑥)2

(cos 𝑥)2
  =  

1

(cos 𝑥)2
   or   1 + (tan 𝑥)2 

Thus, there are two similar answers expressed differently: 

  
𝑑𝑦

𝑑𝑥
  =  f´(x)  =   

1

(cos 𝑥)2
  =  1 + (tan 𝑥)2 
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Survey 

We have now laid the foundation for the differential calculus by 

proving and deriving a lot. Thus, we also have laid the foundation 

for the integral calculus, which we will describe later. 

 

The survey is: 

function   derivative (differentiation of function) 

y  or  f(x)  
𝑑𝑦

𝑑𝑥
  or  f´(x) 

-------------------------------------------------------------------------------- 

constant (c, k, a, or....)  0 

ax + b   a 

ax2 + bx + c  2ax + b 

x½  or  √𝑥    
1

2
 x-½ 

xn   n·xn-1 

ex   ex 

ln x   
1

𝑥
  =  x-1 

ekx   k·ekx 

ax   ax·ln a 

sin x   cos x 

cos x   - sin x 

tan x   
1

(cos 𝑥)2
  =  1 + (tan 𝑥)2 
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y  =  u + v    => y´ =  (u + v)´ =  u´+ v´ 

y  =  u - v     => y´ =  (u - v)´ =  u´- v´ 

y  =  u · v     => y´ =  (u·v)´ =  u´·v + u·v´ 

y  =  
u

v
  => y´ =  (

u

v
)

′
 =  

u´·v − v´·u

v2
    

y  =  y(u(x)) => y´ =  
𝑑y

𝑑x
  =  

𝑑y 

𝑑u
 · 

𝑑u

𝑑x
 

y  =  f(g(x)) => y´= (f(g(x)))´  =  f´(g(x)) · g´(x) 

The two latter formulas express the same. 

  

Examples 

1. 

Solutions with keywords. The first examples give an answer in 

alternative notation: 

f(x)  =  2x2  => f´(x)  =  4x  power 

f  =  2x  => f´  =  2  power 

y  =  2  => y´  =  0  power 

 

f(x)  =  2a + 7 => f´(x)  =  0  constants 

y  =  2k + 117 => 
𝑑𝑦

𝑑𝑥
  =  0  constants 

f(x)  =  2a + 3b => 
𝑑

𝑑𝑥
 f(x)  =  0 constants 

 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       184 
 

f(x)  =  4x3 + 2 ln x => f´(x)  = 12x2 + 2·
1

x
 term by term 

y  =  4x3 + a·ln x =>  
𝑑𝑦

𝑑𝑥
  = 12x2 + a

1

x
 term by term 

y  =  4x3 + ln x =>  
d

𝑑𝑥
 y  = 12x2 + 

1

x
  term by term 

 

4x3 - ln x  => 12x2 - 
1

x
  term by term 

4x3 · ln x  => 12x2 · ln x + 4x3 · 
1

x
  

product 

 
4𝑥3

ln 𝑥
   => 

12𝑥2·ln 𝑥 − 4𝑥3·𝑥−1 

(ln 𝑥)2
 quotient 

 𝑥
1

3  => 
1

3
 · 𝑥−

2

3  power 

 𝑥
1

2 (𝑥
1

2 - 4) = x - 4𝑥
1

2  => 1 - 
1

2
·4·𝑥−

1

2  = 1 - 2x-½ term by term 

 
𝑥

x+1
  => 

1(𝑥+1)−𝑥(1)

(𝑥+1)2
  =  

1

(𝑥+1)2
 quotient 

(ex - 2x)3  => 3(ex - 2x)2 · (ex - 2) outer, inner  

6−𝑥  => 6−𝑥 · ln 6 · (−1) outer, inner 

xex - 1 => (1·ex + x·ex) - 0  =  ex(1 + x) product 

f(t)  =  A · sin (ꞷt + φ) + k  =>  

f´(t)  =  A · cos (ꞷt + φ)· ꞷ + 0  outer, inner and k to 0 

 

2. 

Now we are able to calculate the local maxima and minima 

(combined called extreme values) etc. in a function previously 

mentioned.  
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(An investigation of a function is to find where it is increasing/decreasing, 

has a maximum/minimum, and maybe asymptotes?) 

 
We do so by finding the places where the tangent slope is zero, 

which means the places where the differential coefficient is zero. 

y  =  x3 - 4x2 + 2  => 

 
dy

𝑑𝑥
  =  3x2 - 2·4x + 0  =  0  

3x2 - 8x  =  0   

x(3x - 8)  =  0   

x1  =  0  and  x2  =  
8

3
  and inserted in the function 

y1  =  2  and  y2  =  (
8

3
)

3
- 4(

8

3
)

2
+ 2  =  - 

202

27
  ≈  -7.48 => 

there are extreme values in points  (0, 2)  and  (
8

3
, − 

202

27
) 

Third degree polynomial   

y = x3 – 4x2 + 2 
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At the curve we see that  (0, 2) is a local maximum and (
8

3
, − 

202

27
) 

is a local minimum and that it corresponds nicely with a reading. 

---------- 

If CAS is not available, we must investigate the function before, 

between, and after the two x-values to decide if it is a minimum or 

a maximum. We do so by  

 insertion of for instance -1 into the differential coefficient

        => 

y  = 3· (-1)2 - 8(-1)  =  11 which is a positive slope 

showing that the function increases 

 insertion of for instance +1 into the  differential coefficient

          => 

y  = 3· (1)2 - 8(1)  =  -5 which is a negative slope 

showing that the function decreases 

 and insertion of for instance +3 into the  differential 

coefficient       => 

y  = 3· (3)2 - 8(3)  =  3 which is a positive slope that 

shows that the function increases again 

Therefore, (0, 2) is a local maximum, and (
8

3
, − 

202

27
) is a local 

minimum. 

 

3. 

Previously, we saw the parabola 

h(x)  =  -x2 - 3 

and we found its vertex:  T ( 
−𝑏

2𝑎
 ,

−𝑑

4𝑎
 )  =  T (0, -3) 

We can also find the vertex via the differential coefficient: 
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At the vertex the tangent slope is 0 (horizontal), thus the 

differential coefficient is 0. We use this information: 

h´(x)  =  -2x  =  0 => x  =  0 

which is inserted in the parabola equation to find the y-value 

h(x)  =  -02 - 3  =  -3 => T(0, -3) 

same answer. 

 

4. 

A factory produces a special measuring tool, to be sold at 300 

pounds each. The Profit equals Income minus Expenses 

P  =  I - E 

The market cannot be saturated so I equals the price of one item 

times the number of items, x 

I  =  price ·  number of sold (= number produced)  =  300 · x 

The expenses divides into fixed costs (mainly new equipment) and 

variable costs (operation expenses). It is estimated that  

E  =  F + V  =  (10 000) + (11·x + x2) 

11x is expenses proportional to the number of produced items, 

while x2 eventually becomes significant since the production 

equipment is worn.  

What is the expense per produced item? 

When will the profit per produced item be maximum? 

When will the production render a deficit? 

The expense per item is 
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𝐸

𝑥
  =  

10 000+11𝑥+𝑥2

𝑥
  

 

The profit per produced item is maximum when   

𝐸

𝑥
  =  f(x)   is minimum, which happens when the slope, i.e. the 

differential coefficient is zero:  (
𝐸

𝑥
)

′
 =  0 => 

(
𝐸

𝑥
)

′
 =  

(11+2𝑥)·𝑥−1·(10 000+11𝑥+𝑥2)

(𝑥)2
  =  0  CAS 

x  =  100  (or  x = -100  which cannot be used) 

Thus, the profit per produced item is maximum for item no.100. 

 

Surely, the production gives a deficit at first, and again later when 

wearing becomes severe. These two points derives from equality 

between profit per item and expenses per item: 

300  =  
𝐸

𝑥
   => 

300  =   
𝐸

𝑥
  =  

10 000+11𝑥+𝑥2

𝑥
    CAS 

x  ≈  40   and   x  ≈  249 

Thus, deficit until we have produced 40 items, profit until 249 

items are produced, and deficit thereafter.  

---------- 

Let us have an overview in diagrams: 
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Calculation and readings match nicely.  

 

Function:  
𝐸

𝑥
=  

10 000+11𝑥 +𝑥2

𝑥
                  

𝐸

𝑥
  is the expense per item                     

x is the number of items 

It is seen that  
𝐸

𝑥
  is 

minimum at  x = 100  i.e. 

profit per item is 

maximum. 

𝐸

𝑥
 

Functions:    I = 300x   

E = 10 000 + 11x + x2 
E 

I 

E = expenses    I = income  

Intersection at ca.  x = 40  

and  x = 249 

Pounds 

x = number of items 
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5. 

A free fall is linear and with a constant (within limits) acceleration, 

if we rule out the air resistance. Galilei deduced the following law 

of nature around year 1600: If we have t for time, s for position 

(stretch), v for velocity, and g for the acceleration of gravitation, 

he found the formula 

s  =  
1

2
 · g · t2 

Approximately 100 years later, when Newton had derived the 

differential calculus so it was possible to calculate in ”points”, he 

continued the work of Galilei, and started out by defining: 

The momentary velocity:   v  =  
distance

time
  =  

ds

dt
   

and the momentary acceleration: a  =  
velocity

time
   =  

dv

dt
   

Thus, when the equation for distance is differentiated once with 

respect to time, we get the velocity, - and when we differentiate 

the second time with respect to time, we get the acceleration: 

s  =  
1

2
 · g · t2 the equation of a parabola => 

v  =  
ds

dt
  =  a·t the equation of a straight line => 

a  =  g  which is constant (equal to 9.82 m/s2) 

A  t,s  diagram shows half a parabola, where the tangent slopes 

show the velocity. A  t,v  diagram shows a straight line, where the 

slope is the acceleration. A  t,a  diagram shows a horizontal line: 
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---------- 

The above may also be written this way: 

v  =  
distance

time
  =  

ds

dt
  =  s´  

which is a first order derivative 

and 

a  =  
velocity

time
   =  

dv

dt
  =  

d(
ds

dt
)  

dt
  =  

𝑑2s

𝑑𝑡2
  =  v´ =  s´´  

which is a second order derivative.  

 

s = dist. 

t = time t = time 

v = velocity 

t = time 

a = acceleration 
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6. 

In example 5, the second derivative meant something physical, 

namely 

a  =  s´´ acceleration = distance diff. twice with respect to time 

In other examples, the second derivative just means the tangent 

slope of the curve of the first derivative. This may be used in an 

investigation of a function, as we shall see here:  

We will consider the sine function 

y  =  sin v  v is the angle in radians 

 

Where has the sine curve maximum slope?  

(It seems to be at  π, 2π, . . etc., but let us calculate precisely): 

It has to be at maximum differential coefficient. 

The equation for the slope/differential coefficient is 

y´ =  cos x 

which has a maximum, when its own differential coefficient is 0: 

y´´ =  - sin x  =  0 

which is for the angles  𝜋, 2𝜋, 3𝜋, … . 𝑝 · 𝜋  where p is a whole 

number. 

It corresponds with what we believe to read from the diagram.  

Sine func. 
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More theory 

Is it possible to go on differentiating a third, a fourth,….time?  

In principle, yes, if our variable x (or as here, t) is in a power high 

enough. In the case of the free fall we would have to differentiate 

a with respect to time in a third differentiation. That would yield 

0, and then it is over.  

We have previously mentioned that a fifth degree equation is 

possible in mathematics, but hardly anywhere else. It would be 

possible to differentiate five times, and each time we find the 

slope of the curve, but without any other meaning. Math is 

infinite, but our part of the world is not.  

 

Differentiable - not differentiable 

We are able to calculate differential coefficients in ”points” of a 

curve where it has tangents, and we state, that the function is 

differentiable.  

If we cannot approach the point (here P and Q) at the same curve 

and from both sides, the curve/function is discontinuous and we 

cannot determine a tangent. Thus, we cannot calculate the 

differential quotient either, and the function is not differentiable in 

these points.   

A few examples: 

    P              Q 

 

 

Since we cannot determine the limit value in points P and Q, the 

functions are not differentiable in P and Q.  
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Integral calculus 

In differentiation calculus we cut into very small pieces to 

investigate details. In integration calculus, we gather the small 

pieces again so they make a whole, - going back. So, if we first 

differentiate a function and then integrate, we will return to the 

original function. However, there might have been a constant, 

which disappeared during the differentiation, and consequently 

will be an unknown when we integrate back.  

Thus, we carry out the integration by calculating inversely. All 

proofs are made during differentiation, now we ”just” have to use 

the survey inversely.   

We may go back from a differentiated function to the function, i.e. 

from f´ to f, - or we may just integrate a function, i.e. from f to F. 

F is named the base function (back to basis).  

Often within the Natural Sciences we actually know more about 

the details, than we do about the whole. For example we may 

observe something changing here and now, but what will it be like 

over time? Then, we need integration.  

It will, however, take a little while until we get to exiting 

problems like these. First, we must consider how to integrate, 

which is exiting on its own.  
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Survey: 

derivative (differentiation of function)  function  

𝑑𝑦

𝑑𝑥
  or  f´(x)   y  or  f(x)  

Or: 

function    base function 

f(x)   F(x)  

-------------------------------------------------------------------------------- 

0   constant (often named c or k) 

a   ax   

2ax + b   ax2 + bx   

1

2
 x-½   x½  or  √𝑥  

x½     
2

3
·𝑥

3

2 

n·xn-1   xn  or: 

xn   
1

𝑛+1
·xn+1  

”Thus, we increase the exponent by 1 and divide by the new exponent” 

1

𝑥
  =  x-1   ln ǀxǀ ǀxǀ since x may be negative 

ln x   x·ln x - x 

ex   ex 

ekx   
1

k
·ekx 

ax   
1

ln a
·ax 
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cos x   sin x 

sin x   - cos x 

tan x   -ln ǀcos xǀ 

 

Proofs 

The two novel functions must be proved.  

ln x  is proved by differentiating the result (product and term by term): 

x·ln x - x  diff. => (1·ln x + x·
1

x
 ) - (1)  =  ln x 

and  tan x  also proves by diff. of the result (outer, inner): 

-ln ǀcos xǀ  diff. => - 
1

cos 𝑥
·(- sin x)  =  tan x 
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Notations 

We write an integral using this sign:  ∫   

A stretched S to show that we find the sum, we summate, we 

gather, we integrate. To integrate means to gather and integration 

means a gathering. We gather all the very small pieces we made 

by the derivative.  

If our derivative is f´(x) we may write: 

𝑑𝑦

𝑑𝑥
  =  f´(x)   

dy  =  f´(x) · dx 

Now we want to return to the whole. We do so by gathering all the 

small dy pieces on the left side - and by gathering all the small 

pieces dx times f´(x) on the right side: 

∫ dy  =  ∫ f´(x) · dx 

On the left side it is simple: First we cut macro y, into micro dy, 

and then we reassemble them to y: 

y  =  ∫ f´(x) · dx or f(x)  =  ∫ f´(x) · dx 

This is how we write a normal integral, called an indeterminate 

integral, which yields the complete solution.   

Here we must use the already proved calculation rules from the 

survey (and from mathematical tables) to calculate the right side.  

 

Examples 

1.  

We found the derivative of the function 
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f(x)  =  x2 + x + 3 => f´(x)  =  2x +1+0 

in order to look at details, which are slopes in points on the curve.  

Now we go back to the whole. We do so by gathering, - by 

integration: 

y  =  ∫ f´(x) · dx 

y  =  ∫ (2x + 1) dx usually we omit the multiplication dot => 

y  =  x2 + x + k 

If we will find k, we need more information on the function.  

Instead of y we might have written f(x). 

 

2. 

f(x)  =  x2 + x3   => 

F(x)  =  ∫ f(x) dx  => 

F(x)  =  ∫ (x2 + x3) dx   

F(x)  =  
𝑥3

3
 + 

𝑥4

4
 + k 

 

3. 

We will do some more examples. Actually, we could just go back 

to Example 1 in the derivative calculus and turn around the 

implication sign from  =>  to  <=  and thus go from differentiation 

to integration by adding a constant:  

f(x)  =  2x2 + k <= f´(x)  =  4x   
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Anyway, we will solve some more problems by writing the first 

answers in different ways/notations: 

𝑑𝑦

𝑑𝑥
  =  2x + 3 => y  =  x2 + 3x + k 

y´  =  3x2 -2x + 2 => y  =  x3 - x2 + 2x + k 

d

𝑑𝑥
 y  = -2x + 

3

𝑥2
 = -2x + 3x-2   => y  =  -x2- 3x-1 + k  =  -x2 - 

3

𝑥
 + k 

𝑑

𝑑𝑥
 f(x)  =  5x-6  => f(x)  =  -x-5 + k 

f´(x)  =  4x-½  => f(x)  =  8x½ + k 

f´ =  2  => f  =  2x + k 

 

f(x)  =  2 𝜋  => F(x)  =  2 𝜋x + k       𝜋 is a number 

f  =  ex  => F  =  ex + k 

 

e7·e-x  => e7·e-x·(-1) + k            e7 is a number 

6-2x  =  (6-2)x => 
6−2𝑥

ln(6−2)
 + k 

𝑥4

4
  => 

𝑥5

4·5
  + k  =  

𝑥5

20
 + k 

𝑥
3

4   => 
4

7
·  𝑥

7

4 + k 

ln x  => (x·ln x - x) + k 

1

𝑥
   => lnǀxǀ + k  
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Integration and the four basic arithmetic operations 

Sum 

Just like finding derivatives, we can integrate functions part by 

part and add them, or we can do the integration under the same 

integration sign: 

∫ u(x) dx + ∫ v(x) dx  =  ∫ (u(x) + v(x)) dx 

We prove this by calculating the derivative on the whole of the 

left side part by part 

( ∫ u(x) dx + ∫ v(x) dx )´ =  (∫ u(x) dx)´ + (∫ v(x) dx)´ =  u(x) + v(x)   

And the derivative of the whole of the right side 

(∫ (u(x) + v(x)) dx)´ =  u(x) + v(x) gives the same (the 

right sides are alike). 

 

Difference 

This time we write in brief, implied that u and v are functions of x 

∫ u dx - ∫ v dx  =  ∫ (u - v) dx 

We prove this by calculating the derivative of the whole of the left 

side part by part 

( ∫ u dx - ∫ v dx )´ =  ( ∫ u dx )´ - ( ∫ v dx )´ =  u - v   

And the derivative of the whole of the right side 

( ∫ (u - v) dx )´ =  u - v   gives the same 
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Product 

We may multiply by a constant inside or outside an integral, thus 

we may move it. This is because a constant does not change 

whether we go from macro to micro, or back to macro. It is a 

constant.   

To avoid confusion, with the integration constant k above, we call 

the new constant c.  

∫ c·u(x) dx  =  c·∫ u(x) dx   

again we prove it by differentiation of the whole of the left side  

( ∫ c·u(x) dx )´ =  c·u(x) 

and by diff. of the whole of the right side 

( c·∫ u(x) dx )´ =  c·u(x)  gives the same 

 

Example 1 

∫ ( 
1

𝑥
 + ln x) dx  =  ∫ 

1

𝑥
 dx + ∫ ln x dx  =  (lnǀxǀ) + (x·ln x - x) + k  

∫ ( ln x -117) dx  =  ∫ lnx dx - ∫ 117 dx  =  (x·ln x - x) - (117x) + k 

∫ c·x dx  =  c·∫ x dx  =  c·
1

2
·x2 + k  =  c1·x

2 + k 

Since c is unknown anyhow, we may put c and 
1

2
 together in a new constant 

we call c1  

∫ a·b·x dx  =  ab ∫ x dx  =  ab·
1

2
x2 + k  =  cx2 + k 

again the constants are put together as c 
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Integration by substitution 

Some integrals are difficult to solve. We will therefore show some 

smart methods, which may help us. The first is integration by 

substitution. As we have seen before, in mathematics, it is allowed 

to pick out some sizes or parts and call them something else - we 

substitute. Then we continue calculating with the novelty and 

usually (but not always) finish by substituting back. It is a fine 

method, when x has more ”roles”.  

 

Examples  

1. 

∫ (4x - 2)½ dx 

we chose to substitute  4x - 2. We call it t 

∫ t½ dx where  t  =  4x - 2 

We cannot gather  dx  in a t way, so  dx  must change for  dt. We 

do so by  

t  =  4x - 2      => 
dt

dx
  =  4        dx  =  

dt

4
   

which is inserted 

∫ t½ 
dt

4
  = ∫ t½ ·

1

4
 · dt 

1

4
  is a constant and is moved “outside” 

1

4
 ∫ t½ dt  

Now we can gather  dt  in a  t  way, thus, we can integrate 

 
1

4
 · 

2

3
 t

3

2 + kt  



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       203 
 

and, we substitute back to x 

1

4
 · 

2

3
 (4x − 2)

3

2 + kx   which is the answer (may be reduced) 

The integration constant  kt  belongs to the t-expression and 

changes name to  kx  in the x-expression. 

---------- 

And briefly: 

∫ (4x - 2)½ dx choice:   t  =  4x - 2  =>   

dt

dx
  =  4   

dx  =  
dt

4
  

∫ t½ 
dt

4
   = 

1

4
 ∫ t½ dt   = 

1

4
 · 

2

3
 t

3

2 + kt  = 

1

4
 · 

2

3
 (4x − 2)

3

2 + kx  which is the answer (may be reduced) 

  

2. 

∫ 
2𝑥

𝑥2−3
 dx  choice: t  =  x2 - 3  => 

   
dt

dx
  =  2x   

   dx  =  
dt

2x
  

∫ 
2𝑥

𝑡
 · 

dt

2x
   = 
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 ∫ 
1

𝑡
 · dt  = 

ln ǀtǀ + kt   = 

ln ǀx2 - 3ǀ + kx   which is the answer 

There are no rules for what we may call t, and we must prepare for 

making another choice. The author suggests to choose “the 

innermost” and/or “the most complicated” - as was the case in this 

example. 

 

3. 

∫ sin x · (cos x)½ dx choice: t  =  cos x  => 

   
dt

dx
  =  -sin x  

   dx  =  
dt

− sin 𝑥
   

∫ sin x · t½ · 
dt

− sin 𝑥
  = 

- ∫ t½ dt  = 

 - 
2

3
 𝑡

3

2 + kt  = 

- 
2

3
 (cos 𝑥)

3

2  + kx  which is the answer 
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Integration by parts 

Integration by parts can be used, when x is in two multiplied parts 

(u and v) of the whole function (f): 

∫ u·v dx  =  U · v - ∫ U · v´ dx  U is the base function of u 

The formula is proved by differentiating the right side: 

(U · v - ∫ U · v´ dx)´ =  (U · v)´ - ( ∫ U · v´ dx)´  = part by part 

(U´ · v + U · v´) - (U · v´)  =    product rule and ´ repeals ∫ 

U´ · v  =  u · v 

As by integration gives the left side. Thus proven. 

 

Examples  

1. 

∫ x · sin x dx  =  (-cos x)·x - ∫(-cos x)·1 dx  =  -x·cos x + sin x + k 

 

2. 

And now an advanced solution. We want to calculate 

∫ ex · sin x dx and do so by integration by parts: 

∫ ex · sin x dx  =  ex · sin x - ∫ ex · cos x dx   equation 1 

Here we get nowhere, but if we use partial integration once more 

on the latter part: 

∫ ex · cos x dx  =  ex · cos x - ∫ ex · (-sin x) dx   

and insert it into equation 1: 

∫ ex · sin x dx  =  ex · sin x - (ex · cos x - ∫ ex · (-sin x) dx)  
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and collect all the integrals on the left side: 

∫ ex · sin x dx + ∫ ex · sin x dx  =  ex · sin x - ex · cos x  

2 ∫ ex · sin x dx  =  ex · sin x - ex · cos x + k   

∫ ex · sin x dx  =  
1

2
 (ex · sin x - ex · cos x) + k  =  

1

2
 ex (sin x - cos x) + k  which is the solution. 

 

Other examples 

3. 

In the chapter on differentiation, we saw an example with 

formulas for the free fall that has a constant acceleration, g. 

Now we will consider all linear motions with a constant 

acceleration and the corresponding formulas of acceleration, 

velocity, and position as functions of time. 

We start with the definitions 

the momentary velocity:   v  =  
distance

time
  =  

ds

dt
   ds = v·dt 

and the momentary acceleration: a  =  
velocity

time
  =  

dv

dt
   dv = a·dt 

From these expressions, we may integrate going from acceleration 

to velocity and on to position like this: 

Acceleration a = constant  => 

Velocity  dv = a·dt      ∫dv = ∫a·dt        

v  =  a ∫dt      v = at + k        

v = at + v0 
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Position  ds = v·dt      ∫ds = ∫v·dt        

s = ∫(at + v0) dt     

s = 
1

2
·a·t2 + v0·t + s0 

The integration constant for velocity is the initial velocity v0 

The integration constant for position is the initial position s0 

The a formula renders a horizontal line in a  t,a diagram. 

The v formula renders a straight line with slope a and starts at v0 

in a  t,v diagram. 

The s formula renders a second degree polynomial with the slope 

v and starts at s0 in a  t,s diagram. 

See also these diagrams of the functions with numbers inserted:    

a = 0,5   v0 = 1   s0 = 1 

 

a = acceleration 

t = time 

t = time 

v = velocity 

s = dist. 

t = time 
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The specific integral 

So far, we have considered a differentiated function return to the 

base function. We have gathered the very, very little pieces into 

the whole. The technical term for this is the indeterminate 

integral, which gives us the complete solution.  

Maybe we are only interested in a part of the whole. For instance 

we may be ignorant of the past, and only focus on the future. Then 

we use the specific integral which yields a specific/particular 

solution. 

We write it, like this 

 y  =  ∫  f(x) · dx
b

a
 

Here it is stated that we find y by gathering the very small parts  

f(x)·dx  from  x = a  (the lower limit) to  x = b  (the upper limit). 

When we have integrated and found the base function F(x), we 

insert b for x and subtract a inserted for x. We write it, this way 

y  =  ∫  f(x) · dx
b

a
  =  [𝐹(𝑥)]𝑏

a  =  F(b) - F(a)  =  answer 

for instance 

y  =  ∫  2x · dx
3

1
  =  [𝑥2]3

1  =  32 - 12  =  8 

Here we have integrated the function  2x  going from 1 to 3. 

---------- 

The calculation rules are the same as for the indeterminate 

integral. Yet, we must note two things:  

First, the integration constant k comes both at F(b) and F(a), but 

since we have upper limit minus lower limit, we also have k 

minus k, which is zero. Thus, no k.  
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Second, if we integrate by substitution, the limits also substitutes. 

We will do so in an example. 

 

Examples 

1. 

∫ (ln 𝑥 + ln 𝑥2) dx
2

1
  =  ∫ (ln 𝑥 + 2 ln 𝑥) dx

2

1
  =   for x > 0 

∫ (3 ln 𝑥) dx
2

1
  =  3 ∫  ln 𝑥 dx

2

1
  =  3·[𝑥 ln ǀ𝑥ǀ − 𝑥]2

1  = 

upper minus lower 

 3((2ln 2 - 2) - (1 ln 1 - 1))  =  (6 ln 2 - 6) - (-3)  ≈  1.16 

 

2. 

∫  
2𝑥

𝑥2−3
dx

0

−1
     and x ≠ √3       substitution, choice:   t  =  x2 - 3 => 

    
dt

dx
  =  2x  

    dx  =  
dt

2x
  

changing limits:  tlower  =  (-1)2 - 3  =  -2 

   tupper  =  02 - 3  =  -3 

substitution of dx and limits: 

∫  
2𝑥

𝑡
 ·  

dt

2x

−3

−2
  = 

∫  
1

𝑡
· dt

−3

−2
  =    and we have a full t expression 

[ln ǀ𝑡ǀ]−3
-2  = 
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ln ǀ-3ǀ - ln ǀ-2ǀ  = 

ln 
3

2
  ≈  0.406  which is the answer 

We do not need to substitute back to a x expression, since we also 

substituted the limits and inserted the figures. 

---------- 

Now we solve the same problem by substituting back again to a x 

expression: 

∫  
2𝑥

𝑥2−3
dx

0

−1
  choice: t  =  x2 - 3 => 

    
dt

dx
  =  2x  

    dx  =  
dt

2x
  

Now we will substitute from x to t and should substitute the limits 

from x to t, too, but since we will go back later, we just call the t 

limits some unknown values, like a and b, meanwhile:  

and we insert 

∫  
2𝑥

𝑡
 ·  

dt

2x

𝑏

a
  = 

∫  
1

𝑡
· dt

𝑏

a
  =    a t expression 

[ln ǀ𝑡ǀ]𝑏
a  = 

[ln ǀ𝑥2 − 3ǀ]0
-1  =  back to x with x limits 

(ln ǀ02 − 3ǀ) - (ln ǀ(−1)2 − 3ǀ)  = 

ln 3 - ln 2  = 

ln 
3

2
  ≈  0.406  same answer 
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3. 

A car starts accelerating  

a(t)  =  
√t

10
   where t is time in seconds 

What is the velocity v after 60 seconds, and how far is the car, 

distance s, in meters? 

---------- 

We integrate from acceleration to velocity, and on to distance: 

a  =  
dv

dt
     => dv  =  a dt       => a-function inserted 

v  =  ∫
√t

10
 dt

60

0
  =  

1

10
  ∫  𝑡½ dt

60

0
  =  

1

10
· ( 

2

3
 [𝑡

3

2]
60

0 )  =  

1

10
 · ( 

2

3
 (60

3

2)) - (0)  =  31 
m

s
  ( ≈ 110 

km

hour
 ) which is the velocity 

 

v  =  
ds

dt
     => ds  =  v dt       => v-function inserted 

s  =  ∫ [
1

10
·

2

3
(𝑡

3

2)] dt
60

0
  =  

1

10
·

2

3
 ∫ 𝑡

3

2 dt
60

0
  =  

1

10
· ( 

2

3
 ·  

2

5
 · [𝑡

5

2]
60

0 )  

=  

1

10
 · ( 

2

3
 · 

2

5
 (60

5

2)) - (0)  ≈  744 m     which is the distance 

This example will be further considered in the chapter ”Areas” example 4.  
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Areas 

Often in mathematics, after a formula has been derived, and a tool 

has been developed, it turns out that the tool may be used for 

something different.  

The specific integral can also be used as an advanced method to 

find areas of otherwise ”impossible” figures.   

Let us consider this expression again - yet in another way: 

A  =  ∫  f(x) · dx
b

a
  now called A 

dx is a very small distance in the x direction, while f(x) is the 

corresponding distance in the f(x) direction (y direction). 

Multiplication:  f(x) · dx  form a very small area. If we gather all 

the micro areas (very small strips) from a to b, we have a visible 

macro area. The height f(x) of the strips vary with the function, 

see the following example in the diagram 
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Since dx is infinitely small, f(x) in practice will be the height of 

the strip in the middle as well as in the two sides. Only, here dx is 

shown wide enough for us to see it. 

The area limited by the x-axis, the curve, and by the lines x = a, 

and x = b, can be calculated precisely using the specific integral.  

 

Examples 

1. 

The area in the diagram is 

A  =  ∫  f(x) · dx
b

a
         

A  =  ∫  ( 
1

2
𝑥3 − 𝑥2 + 1) dx

2,5

0,5
       

A  =  [
1

2
·

1

4
· 𝑥4 −

1

3
𝑥3 + 𝑥]

2,5

0,5        

A  ≈  (4,88 - 5,21 + 2,5) - (0,0078 - 0,0417 + 0,5)      

A  ≈  (2,17) - (0,466)  ≈  1,704 

 

2. 

If we are below the x-axis, the function value f(x) is negative, and 

the area will become negative as well. We therefor do numerical 

calculation if the area is below the x-axis. For instance, if we will 

find the area between the x-axis and the sine curve from x = 0 to    

x = 2𝜋  



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       214 
 

 

A  =  ∫ sin 𝑥 · dx
𝜋

0
 + ǀ ∫ sin 𝑥 · dx

2𝜋

𝜋
 ǀ     

A  =  (- cos 𝜋 - (- cos 0)) + ǀ(- cos 2𝜋 - (- cos 𝜋))ǀ      

A  =  (- (-1) - (- 1)) + ǀ(- 1 - (- (-1))ǀ  =  2 + 2   

A  =  4 

 

3. 

Let us find the common area between these two parabolas         

f(x) = x2 + 2  and  g(x) = -x2 + 4 

 

We find the limits, where the parabolas intersect, i.e.  

f(x)  =  g(x)  => 

Sine func. 
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x2 + 2  =  -x2 + 4   

2x2 - 2  =  0   

x = -1  and  x = 1 

Now we can integrate by finding the area under g and subtract the 

area under f 

A  =  ∫ (−𝑥2 + 4) dx
1

−1
− ∫ (𝑥2 + 2) dx

1

−1
     

A  =  [(−
1

3
𝑥3 + 4𝑥) − ( 

1

3
𝑥3 + 2𝑥)]

1

-1    

A  =  (( - 
1

3
 + 4) - ( 

1

3
 + 2)) - (( 

1

3
 - 4) - (- 

1

3
 - 2))   

A  =  
4

3
 - (- 

4

3
 )    

A  =  
8

3
  

 

4. 

We will continue example 3 from chapter: ”The specific integral”, 

with an accelerating car: 

We had: a = 
√𝑡

10
     =>     v = 

1

10
·

2

3
· 𝑡

3

2     =>      s = 
1

10
·

2

3
·

2

5
· 𝑡

5

2 

Now we are able to find the velocity v graphically/numerically by 

reading the area under the t,a curve. From t = 0 to t = 60 seconds, 

the area observes to correspond to 31 meters per second. 

And we may find the distance s by reading the area under the t,v 

curve. From t = 0 to t = 60 seconds, the area observes to 

correspond to 744 meters. 
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Clearly, there are uncertainties in our readings, yet we observe 

correspondence.  

 

 

  

s for distance in meters v for velocity in meters per second 

t for time in sec. t for time in sec. 

Area = s 

a for acceleration 

in meters per sec.2 

t for time in sec. 

Area = v 
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Volumes 

We can rotate a 2D area around the x or y-axis and have a 3D 

volume.  

The formula for rotation around the x-axis derives 

         y 

  

        dx       f(x) 

               x  

                a   b  

 

If we rotate our infinitesimally thin strip around the x-axis we 

have a micro cylinder. A macro cylinder has the volume 

V  =  𝜋 · r2 · l   l for length 

for our micro cylinder the volume is 

dV  =  𝜋 · f(x)2 · dx 

by integration (gathering all micro cylinders) from a to b 

V  =  𝜋·∫ 𝑓(𝑥)2 dx
b

a
         the rotation volume around the x-axis 

Thus, the volume can be calculated when we have an expression 

of the function, which informs how the radius varies.  

---------- 
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The formula for rotation around the y-axis derives 

       y 

  

            A                                 f(x) 

             a    dx   b  x 

By rotation of our infinitely thin strip around the y-axis, we have a 

cylinder shell with volume 

dV  =  height · circumference · micro-thickness => 

dV  =  f(x) · 2𝜋𝑥 · dx    => 

and when we integrate (gather all the micro cylinder shells) from a 

to b, the volume - calculated numerically (x or f(x) may be 

negative) - is 

V  =  │2𝜋·∫ x · f(x) dx
b

a
│     the rotation volume around the y-axis 

For the figure shown the rotation volume looks like the space 

under the stands in a stadium.  

We may also view the rotation volume as the area A rotated 

around the y-axis. 

If  a = 0  there will be no hole in the middle.  

 

Examples 

1. 

We will find the formula of a cones volume. 

We rotate a line segment once around the x-axis, and have a cone 

that lies down.  
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                y           line segment:  f(x)  =  a·x  =  
𝑟

ℎ
 · x 

                      r   

                              x   

     

           h           rotated line segment 

 

V  =  𝜋·∫ 𝑓(𝑥)2 dx
b

a
    => 

V  =  𝜋·∫ (
𝑟

ℎ
 ·  x)2 dx

h 

0
  r and h are constants  

V  =  𝜋·(
𝑟

ℎ
)

2
· ∫ 𝑥2 dx

h 

0
    

V  =  𝜋·(
𝑟

ℎ
)

2
· [

𝑥3

3
]

ℎ

0       

V  =  𝜋·(
𝑟

ℎ
)

2
·  (

ℎ3

3
− 0)    

V  =  
𝜋

3
 r2 h  which is the formula for a cones volume 

 

2. 

Also, let us find the volume of a sphere: 

         y  A circle at the centre   

    of the coordinate system 

    -r           r  has the equation 

              x  x2 + y2  =  r2 
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A whole circle can only be described as a parameter function (see 

the chapter about vector functions). As an ”ordinary” function we 

have to make the equation for a half circle above the x-axis 

r2 = x2 + y2       y =  (r2 - x2)½        f(x)  =  (r2 - x2)½     => 

This half circle is rotated once around the x-axis, while the limits 

are -r and r 

V  =  𝜋·∫ 𝑓(𝑥)2 dx
r

−r
     => 

V  =  𝜋·∫  ((𝑟2  −  𝑥2)½)2 dx
r

−r
    

V  =  𝜋·∫  (𝑟2 − 𝑥2) dx
r

−r
 split in two   

V  =  𝜋·∫  𝑟2 dx
r

−r
  -  𝜋·∫  𝑥2 dx

r

−r
      r2 is a constant  

V  =  (𝜋 · 𝑟2 [𝑥]𝑟
-r ) -  (𝜋 · [

1

3
𝑥

3

]
r

-r )   

V  =  (𝜋 · 𝑟3 - (- 𝜋 · 𝑟3))  -  (𝜋 · ( 
1

3
𝑟3 - (- 

1

3
𝑟3)))  

V  =  2 𝜋 · 𝑟3 -  
2

3
·  𝜋 · 𝑟3    

V  =  
4

3
·  𝜋 · 𝑟3  which is the volume of a sphere 

 

3. 

We may also find the rotation volume between two curves. Here 

we will do it for the two parabolas in the recent example 3 of the 

former chapter. We rotate around the y-axis: 

The function f(x) here becomes ”upper minus lower”: 

(-x2 + 4) - (x2 + 2)    => 
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and the limits are from 0 to 1, - since it is half the common area 

that is to be rotated once.  

 V  =  2𝜋·∫ x · f(x) dx
b

a
    => 

 

V  =  2𝜋·∫ x · ((−𝑥2  +  4) −  (𝑥2  +  2)) dx
1

−0
  

V  =  2𝜋·∫ (−2𝑥3  +  2x) dx
1

0
    

V  =  2𝜋 [− 
1

2
𝑥4 + 𝑥2]

1

0      

V  =  2𝜋 ((− 
1

2
+ 1) − (0))    

V  =  2𝜋 · 
1

2
      

V  =  𝜋  ≈  3.14   which is the volume 
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Guldin’s rules 

Guldin´s rules are also based on rotating a figure around an axis, 

which it is not intersecting. There are two rules:  

1. Rotation of a curve segment, which will render an area.  

2. Rotation of an area, which will render a volume.   

 

Examples 

1. y 

                b 

  r  R 

                  x 

A line segment is shown to the left. The width is b. Rotation 

around the x-axis renders a flat belt. The area of the belt is 

A  =  b · circumference => 

A  =  b · 2𝜋𝑟 

Which is Guldin’s first rule. It is also valid for curve segments 

where r is the radius of rotation for the centre of gravity of the 

curve. Yet, determination of centres of gravity is not a subject of 

this book.  

If we will produce a flat belt where  b = 20 mm  and  rmiddle = 300 

mm, the average (along the neutral line) area of the belt becomes: 

Aaverage  =  20 · 2𝜋 · 300  ≈  37 700 mm   

---------- 
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A circle with radius r is shown to the right, which becomes a ring 

named a toroid (a ”donut”) on rotation around the x-axis. The 

volume of the toroid becomes 

V  =  A · circumference => 

V  =  Acircle · 2𝜋𝑅  => 

V  =  𝜋𝑟2 · 2𝜋𝑅 

Which is Guldin’s second rule. It is also valid for unsymmetrical 

areas, where A calculates accordingly, and where R is the rotation 

radius of the centre of gravity of the area. Yet, determination of 

centres of gravity is not a subject of this book. 

If we will produce rubber o-rings with a radius of  r = 3 mm  and a 

Radius of the centre line of  R = 25 mm  the volume of the o-ring 

is 

V  =  (𝜋 · 32) · (2𝜋 · 25) 

V  ≈  4 441 mm3 

For instance, this information may be used to calculate how much 

raw rubber powder is needed for the production.  
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Curve length 

        

     dl       dy 

        dx 

 a           b 

 

We use Pythagoras on the infinitesimal small rectangular triangle, 

where dl is a secant of the curve: 

(dl)2  =  (dx)2 + (dy)2  and dy  =  f´(x) · dx 

which is inserted   => 

(dl)2  =  (dx)2 + (f´(x) · dx)2   

dl  =  √(dx)2 + (f´(x) · dx)2)    

dl  =  √(1 + f´(𝑥)2) · (dx)2   

dl  =  √1 + f´(𝑥)2 · dx   => 

l  =  ∫ √1 + f´(𝑥)2 dx
b

a
   or 

l  =  ∫ (1 + f´(𝑥)2)½ dx
b

a
 which is the curve length from a to b 

 

So, here, just like for areas and volumes, we can calculate 

precisely, provided the curve/figure is written as a function. 
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Example 

We will find the curve length of the function   f(x)  =  
1

3
 𝑥

3

2  from    

x = 0  to  x = 2: 

l  =  ∫ (1 + f´(𝑥)2)½ dx
b

a
  where 

f´(x)  =  
1

2
 · 𝑥

1

2   => 

∫ (1 + (
1

2
· 𝑥

1

2)2)½ dx
2

0
    

∫ (1 +
𝑥

4
)½ dx

2

0
   choice: t  =  1 +

𝑥

4
 

    
𝑑𝑡

𝑑𝑥
  =  

1

4
 

    dx  =  4·dt 

4 ∫ 𝑡½ 
𝑏

𝑎
𝑑𝑡  =  4 [

2

3
· 𝑡

3

2]
𝑏

a  =  4 [
2

3
(1 +

𝑥

4
)

3

2]
2

0  =  4 [( 
2

3
· (

3

2
)

3

2 ) - (
2

3
)]  

≈  2.24   which is the curve length 

 

Often it is very difficult to calculate the curve lengths, so usually 

CAS is applied. 
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Differential equations 

An equation with both a quantity (y) and its differential coefficient 

(y´) is called a differential equation. It describes a quantity, and 

how it changes, - usually related to time. We now talk about 

advanced mathematics to be used in complicated problems.  

Some technical terms:  

A differential equation is solved by integration calculus. Thus, just like in other 

integrals we have an indeterminate solution = complete solution = general solution 

with an unknown integration constant - or a special solution = particular solution 

where the integration constant is shortened out.    

A differential equation with y´ (first derivative) is named a first order differential 

equation. A differential equation with y´´ (second derivative) is named a second 

order differential equation. 

A differential equation with just y-parts (i.e. with y, y´, y´´…) is called  

homogeneous - otherwise it is inhomogeneous. 

 

Typical differential equations 

We will derive and prove the formulas for solving one basic, and 

four typical differential equations. The fourth formula solves 

many differential equations. Furthermore, we will derive and 

prove the formula for solving a special type called the logistic 

differential equation.   

The basic differential equation is 

𝑑y

𝑑x
  =  k · y  =>  

which is solved by separating the variables 

𝑑y

𝑦
  =  k · dx  

Here we call it theorem 0, and we use it in example 0: 
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Example 0 

How can we predict the decay of radioactive matter with time? 

We do so by observing small changes taking place presently and 

then integrate for the full picture in past and future. Surely, there 

is uncertainty involved, but here we present the basics:  

The activity A of a radioactive matter equals a decay constant k, 

times the number of radioactive atoms, N, in a sample   

A  =  k · N  

The activity also equals the change of the number of radioactive 

atoms, dN, in infinitesimal time, dt 

A  =  - 
dN

dt
  minus because the activity decreases => 

the right sides are alike 

- 
dN

dt
  =  k · N   

here we separate the variables, i.e. we gather N to the left and t to 

the right 

dN

N
  =  - k·dt  

and if N0 is the number of radioactive atoms at time 0 (now) and t 

is time to come, we have 

∫
1

N
 𝑑𝑁

𝑁

No
  = - k ∫  𝑑𝑡

𝑡

o
   ln N - ln N0  =  - k·t  

 ln 
N

No
  =  - k·t   

N

No
  =  e−k·t   

 N  =  N0 · e−k·t   which is the answer. 
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In a diagram, the curve will look this way in principle. The curve 

becomes quantified when/if we know k.  

 

The curve is exponentially decreasing and asymptotic to the first-

axis. The radioactivity never becomes zero. Therefore, it is nice to 

know when we have reached half the number of radioactive atoms  
No

2
 . The corresponding amount of time is named the half-life, as 

shown. This way, we may compare the half-life for various 

radioactive materials. For some radioactive materials like 

platinum-178, the decay is quick and is measured in seconds, 

while others, for instance certain types of uranium, decay over 

millions of years.  

 

 

t = 0 , now 

t for time 

N = number of radioactive atoms 

Half-life reading:          

appr.:  t0,5 = 0,7 
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More theory 

The four typical differential equations are: 

(Please note that some multiplication signs (dots) are omitted) 

 

Equation   Solution formula 

y´ + ay  =  0 => y  =  c · e-ax  

y´ + ay  =  b => y  =  
b

a
 · c · e-ax  

y´ + ay  =  h(x) => y  =  e-ax ∫ h(x)·eax dx + c·e-ax  

y´ + g(x)·y  =  h(x) =>           y  =  e-G(x) ∫ h(x)·eG(x) dx + c·e-G(x)  

 

Theorem 3 and 4 hold functions that may be comprehensive on 

their own. Thus, we are able to do calculations on very 

complicated systems/models like economic models, climate 

models, etc. 

It is easier to present the solution formulas in reverse order. 

 

Theorem 4 

y´ + g(x)·y  =  h(x) and multiplied by  eG(x)  on either side  => 

y´·eG(x) + g(x)·y·eG(x)  =  h(x)·eG(x) 

here we utilize a known formula for differentiation of a product: 

(y · eG(x))´  =  y´· eG(x) + y · g(x)·eG(x) 

Where the right side equals the left side above. Thus, the right side 

above must also equal the left side below. We continue with the 

latter: 
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(y · eG(x))´  =  h(x)·eG(x)  

and integrate on either side (remembering the integration constant c) 

(y · eG(x))´  =  h(x)·eG(x)   

y · eG(x)  =  ∫ h(x)·eG(x) dx + c  

y  =  e-G(x) ∫ h(x)·eG(x) dx + c·e-G(x)   theorem 4 

 

Theorem 3 

y´ + ay  =  h(x) 

Now g(x) is a constant a, Thus,  G(x) = ax  which is inserted 

directly into theorem 4 

y  =  e-ax ∫ h(x)·eax dx + c·e-ax   theorem 3 

 

Theorem 2 

y´ + ay  =  b 

Now h(x) also equals a constant b, which is inserted directly into 

theorem 3 

y  =  e-ax ∫ b·eax dx + c·e-ax   

y  =  e-ax · b · 
1

a
 · eax + c·e-ax    

y  =   
𝑏

a
  + c·e-ax    theorem 2 

 

Theorem 1 

y´ + ay  =  0 
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b = 0  inserted in theorem 2 

y  =  c·e-ax     theorem 1 

 

In some tables  ay  is moved to the right side and  -a  is called  k, 

which renders: 

y´ =  ky      => y  =  c · ekx  theorem 1 

Note, that written this way, the differential equation in theorem 1 

equals the basic differential equation theorem 0, which was solved 

by separating the variables (and which was used in example 0). 

Thus, there are two solution methods: 

 

1. 

We will now solve the differential equation from example 0 by 

using theorem 1 

- 
dN

dt
  =  k · N  N´ =  - k · N               => 

N  =  c · e-kt   

which is the solution for the indeterminate integral.  

In example 1 we had 

N  =  N0 · e
-kt  

by solving a specific integral.  

The difference is that we know the initial value of N, N0 , which 

we use in the specific integral. This information we did not have 

for the indeterminate integral, so here we could only continue with 

new information. However, we find that the solutions are the same 

in principle.  
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Also, here we get the explanation to the fact that the indeterminate 

integral yields a complete solution, while the specific integral 

yields a specific solution.  

We continue with the indeterminate solution by inserting the 

initial value of N, N0 , at t = 0 

t = 0  =>  N = N0  inserted  => 

N0  =  c · e-k0  =  c · 1  => c  =  N0  => 

N  =  N0 · e
-kt   same answer 

 

2. 

A big cup of coffee with the temperature 83°C, which is in a room 

with a constant temperature of 22°C, follows the differential 

equation 

dT

dt
  =  -k·(T - 22) 

where T is temperature in °C, t is time in minutes and k is a 

constant. 

It was measured, that the coffee is 65° after 20 minutes. 

What is the equation for T as a function of time? 

When is the coffee 45° ? 

---------- 

We rearrange the equation 

dT

dt
  =  -k·(T-22)  

dT

dt
 + k·T =  k·22  
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and find that it corresponds with theorem 2 

y´ + ay  =  b => y  =   
𝑏

a
  + c·e-ax  

which, in our case becomes 

dT

dt
 + k·T =  k·22 => T  =  

𝑘·22

k
  + c·e-kt  =  22 + c·e-kt  

We find c from the information:    T = 83  when  t = 0 => 

T  = 22 + c·e-kt  => 83 = 22 + c·e0 =>  

c = 61  => T  =  22 + 61·e-kt  

We find k from the information:    T = 65  when  t = 20 

 T  =  22 + 61·e-kt  => 65  =  22 + 61·e-k·20  

    
65−22

61
  =  e-20k  

   ln 0.7049  =  -20k 

   k  =  
− 0.3497

− 20
  =  0.0175 => 

T  =  22 + 61·e-0.0175·t  which is the cooling function. 

and for  T = 45°  

45  =  22 + 61·e-0.0175·t   ln 
45−22

61
  =  -0.0175·t  

t  =  
−0.9754

−0.0175
  =  55.7 minutes which is the answer 

 

3. 

In a brewery is produced mineral water. In a pressure vessel CO2 

is dissolved in the water, as described in this differential equation  

dC

dt
  =  k·(Cs - C)   
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Where  
dC

dt
  is the growth in concentration per unit time, k is a 

constant, Cs is the saturation concentration and C is the variable 

concentration. 

We will find an expression for the concentration C as a function of 

time (i.e. the indeterminate solution) by solving the differential 

equation. 

---------- 

We rearrange so we can correspond with the formulas 

dC

dt
  =  k·(Cs - C)  

dC

dt
  =  k·Cs - k·C  

dC

dt
 + k·C  =  k·Cs  

We find correspondence with theorem 2 

y´ + ay  =  b => y  =  
𝑏

a
  + c·e-ax  

which in our case becomes 

dC

dt
 + k·C  =  k·Cs  => C  =  

𝑘·𝐶𝑠

k
  + c·e-kt  = Cs + c·e-kt  

We find c from the information:    C = 0  when  t = 0 => 

0  = Cs + c·e-k·0  c  =  - Cs   => 

C  =  Cs - Cs·e
-kt   

Which is the equation for the concentration growth.  

 

4. 

Now we will solve a difficult problem:  
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At the launch of a rocket was measured data that complied the 

following differential equation describing velocity as function of 

time (v = f(t)), valid for the first 14 seconds: 

dv

dt
 - 

1

15−𝑡
 · v  =  

300

15−𝑡
 - 9.81        (equation from: www.studieportalen.dk) 

v is the velocity of the rocket in meters per second, and t is time in 

seconds. At the start:  t = 0  and  v = 0 

We will find an expression for the velocity v as function of time, 

i.e. we will solve the differential equation.  

---------- 

We compare with theorem 4 

y´ + g(x)·y  =  h(x) => and in our case: 

v´ + g(t)·v  =  h(t)  which is compared with 

v´ - 
1

15−𝑡
 · v  =  

300

15−𝑡
 - 9.81 which corresponds when 

g(t)  =  - 
1

15−𝑡
  and h(t)  =  

300

15−𝑡
 - 9.81 => 

therefore the solution formula is 

v  =  e-G(t) ∫ h(t)·eG(t) dt + c·e-G(t) 

To continue we have to calculate  G(t)  which is the integral of 

(the base function for)  g(t) 

G(t)  =  ∫ (- 
1

15−𝑡
 ) dt    substitution, choice s  =  15 − t 

   => 
ds

dt
  =  -1 

    dt  =  - ds 

G(t)  =  ∫ (- 
1

𝑠
 )(- ds) 
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G(t)  =  lnǀsǀ  => 

The integration constant is not added since it was already taken 

into account, when theorem 4 was derived. 

Substitute back 

G(t)  =  ln ǀ15 - tǀ 

Since we know that t max. is 14, 15 - t  must be positive, so the 

numerical parenthesis becomes an ordinary parenthesis.  

G(t)  =  ln (15 - t) 

and we insert 

v  =  e-G(t) ∫ h(t)·eG(t) dt + c·e-G(t)   => 

v  =  e-ln(15-t) ∫( 
300

15−𝑡
 - 9.81) ·eln(15-t) dt + c·e-ln(15-t)   

reduce 

v  =  
1

15−𝑡
 ∫ ( 300 - 9.81(15 - t)) dt  +  c·

1

15−𝑡
   => 

integrate 

v  =  
1

15−𝑡
 ( 300·t - 147.15·t + 

9.81

2
·t2 )  +  c·

1

15−𝑡
  

t = 0  =>  v = 0  =>  c = 0   => 

v  =  
152.85·t + 4.905·𝑡2

15−𝑡
  

which is the equation/expression for the velocity 

---------- 

The velocity after 14 seconds is: 

v  =  
152.85·14 + 4.905·142

15−14
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v  ≈  3101 meters per second or ca. 11,165 kilometers per hour 

 

The logistical differential equation  

The logistical differential equation describes limited growth. The 

variable (here y) can reach a maximum value and no more. The 

equation is 

dy

dx
  =  ay(m - y) or y´ =  ay(m - y)  

where m is the maximum value. We observe, that the growth  
dy

dx
  is 

direct proportional to y and y’s distance from the maximum value. 

The solution is  y  =  
m

1+c·e−amx
  

Which is proved in a peculiar way: We guess the solution 

mentioned and control if it is true: 

We differentiate the solution y  =  
m

1+c·e−amx
  => 

y´  =  
0 − m(c·e−amx(−am))

(1 + c·e−amx)2
  =  

am2(c·e−amx)

(1 + c·e−amx)2
    

which we, together with the guessed solution, insert into the 

original differential equation 

y´ =  ay(m - y)    => 

𝑎m2(c·e−amx)

(1 + c·e−amx)2
  =  a · 

m

1+c·e−amx
· (m - 

m

1+c·e−amx
 )   

am2(c·e−amx)

(1 + c·e−amx)2
  =  

am2

1+c·e−amx
 -  

am2

(1+c·e−kmx)2
    

am2(c·e−amx)

(1 + c·e−mx)2
  =  

am2+ am2ec−amx− am2

(1+c·e−amx)2
    
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am2(c·e−amx)

(1 + c·e−amx)2
  =  

 am2ec−amx

(1+c·e−amx)2
     

which is true. 

For simplicity we chose  c = 1, a = 5  and  m = 1 in the equation 

y  =  
m

1+c·e−amx
 

and may sketch this curve 

 

In the first half there is progressive growth, and in the second half 

there is reduced growth. The function value 1 (= 100%) is a 

horizontal asymptote of the function, - we never reach 1.  

 

Example 5 

Biologists have introduced 50 parrots to an island, where there 

were no parrots before. The biologists estimate that there may live 

up to 2000 parrots on the island, and after 24 months there were 

100 parrots. 

What is the growth function, and how long will it take until there 

are 1500 parrots on the island? 

---------- 

Curve in 

principle for 

limited growth 
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y´ =  ay(m - y)  => y  =  
m

1+c·e−amt
  

Here  y = number of parrots, x is now called t for time in number 

of months, m is 2000, while c and k must be found from the 

information 

t = 0  and  y = 50 => 50  =  
2000

1+c·e0
  =>  c = 39 

t = 24  and  y = 100 =>  

100  = 
2000

1+39·e−a·2000·24
    =>   

1 + 39 · e−a·2000·24  =  20    

 e−a·2000·24  =  
19

39
     

 −a · 2000 · 24  =  ln 
19

39
   

 a  =  
− 0.7191

− 48 000
  =  0.000014981  

Inserted we find the growth function of the parrots 

 y  =  
2000

1+39·e−0.00001498·2000·t
  

and we expect 1500 parrots after 

1500  =  
2000

1+39·e−0.00001498·2000·t
    

 39 · e−0.00001498·2000·t  =  
2000

1500
 -1   

 e−0.00001498·2000·t  =  
1

3·39
  

 −0.00001498 · 2000 · t  =  ln 0,0085  

t  =  
−4.7677

−0.03
  ≈  158 months or appr.13 years. 
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Slope fields 

Here is a brief description of a pretty rare concept within 

differential equations, namely slope fields. 

Slope fields is a diagram giving a survey of possible solutions to a 

differential equation.  

Let us consider a simple example without any function constants 

(such as c, k, t,…): 

y´ = 2y + 2x    

Here we may insert coordinates of points (x, y) which renders the 

slope of the curve in that very point, for instance: 

(x, y) = (0, 0)  =>  y´ = 0     or     (1, 1) => y´ = 4     and so on. 

Then we may sketch a small tangent (= line element) in a lot of 

points, and consequently, we have a slope field. A tiring work 

suitable for CAS. Here shown for  y´ = 2y + 2x 
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If we follow a series of small line elements, we have a certain 

solution curve. There exist an infinite number of solution curves. 

So, the slope field shows the infinite number of possible complete 

solutions. 

---------- 

We may also solve the differential equation 

y’- 2y = 2x       which corresponds with theorem 3 and has the solution    => 

y = -x - 
1

2
 + c·e2x   the calculation is not in focus and is not shown 

and display this diagram with some c-values (various specific 

solutions):  

 

---------- 

The two diagrams show the same in principle:  

The first diagram is based on the differential equation and displays the slope 

field, which gives a survey (somewhat coarse) of possible solution curves. 
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The other diagram is based on the complete solution and displays a few 

precise solution curves (specific solutions) for some values of c. One may say 

that we have extracted five curves from the slope field.  

---------- 

Usually, we solve the differential equation to find the complete 

solution, and then insert known values to find c, and then we have 

the specific solution (just like we did in the former chapter). 

However, we may want a certain solution curve to pass through a 

certain point, for instance (0, 0). Then   

 we look at the slope field and find that it seems possible 

 insert (0, 0) in the solution and find c = 1 

 go back and change the data (if possible) so that c becomes 

1. 

Seen from an overall perspective, it thus may be possible to go 

back and change the conditions to have a certain solution.  

---------- 

We also learn from the slope field how important it is to have the 

right rand conditions. Otherwise, we may end up having a 

wrong/uncertain solution.  
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Functions of two variables 

So far we have seen functions of one variable (y depends on x or t 

or… ). Thus, we have described most cases. However, sometimes 

one quantity z depends on (is a function of) two variables, x and y. 

Yes, there may be even more variables, but as we shall see, they 

are treated the same way. 

 

Expressions of functions 

If we have a function  z = f(x, y)  and will see how z changes 

when only x changes, that is  
dz

𝑑𝑥
 , we change the notation to  

∂z

∂x
     

It is called the partial derivative. 

This way, we state that there are other variables, but now we only 

focus on z related to x. 

We differentiate as before regarding y (and/or other variables) as 

constants. All calculation rules for differentiation are the same.  

 

Example 1 

z  =  2x + 3y => 

 
∂z

∂x
  =  2 + 0  =  2 and 

∂z

∂y
  =  0 + 3  =  3 

 

2. 

z  =  x2 + y3 => 

 
∂z

∂x
  =  2x  and 

∂z

∂y
  =  3y2 
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This way we consider just one variable.  

 

3D figures 

Spatial figures have equations of the type 

z  =  f(x, y) 

So, if we know the equation of the figure and the (x, y) 

coordinates of a point, we can calculate the z coordinate of the 

point.  

 

Example 3. 

z  =  f(x,y)  =  x3 - 5y2 

 

 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       245 
 

Complicated figures like this, are in practice displayed by CAS. 

Only simple figures may be sketched by hand.  

 

4. 

The geometry of shapes in nature is complicated, and it may 

probably not be possible to find useful equations, so level curves 

of the landscape are normally sketched as little lines/curves 

through measured points of the same altitude, for instance 41 

meters above mean sea level.  

Here we display a 3D figure with level curves viewed from above: 

 

It is observed, that the figure is steep on the inside, shown by 

small distances between the level curves, - not steep on the top, - 

and steep again on the outside. 

The main reason for displaying this figure is that we shall now 

consider the gradient. The gradient is biggest at close level curves.  
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The gradient 

The word actually means slope, but here in 3D the meaning is 

expanded a bit. The gradient describes both the direction and the 

size of the slope (thus, it is a vector, - a lot more about this in   

Part 4).  

∂z

∂x
  shows the slope of the spacial figure in the x-direction 

∂z

∂y
  shows the slope of the spatial figure in the y-direction. 

Just like before.  

But what about the slope somewhere in between?  

That is the gradient. 

We consider slope in x and slope in y combined and write 

grad.(z)  = grad.(f(x,y))  =  (𝑠𝑙𝑜𝑝𝑒 𝑖𝑛 𝑥
𝑠𝑙𝑜𝑝𝑒 𝑖𝑛 𝑦

) = (𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑖𝑓𝑓.𝑖𝑛 𝑥
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑖𝑓𝑓.𝑖𝑛 𝑦

) = (
∂z

∂x
∂z

∂y

) 

which is the definition of the gradient. 

The size of the gradient is found by Pythagoras: 

ǀgrad.ǀ  =  ((
∂z

∂x
)

2
+ (

∂z

∂y
)

2

)
½

 

Thus, the size alone is the slope with no knowledge of the 

direction.  

We use Pythagoras because the slope in the x-direction is 

orthogonal to the slope in the y-direction.  

This corresponds to a vector (where the combined direction is 

decided by the “strength ratio” of the two differential coefficients) 
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and its length. The gradient is a vector. See more about vectors in 

Part 4. 

 

Example 1 

We display the function  

z  =  f(x,y)  =  x2 + y2    which has  

the slope in x  
∂z

∂x
  =  2x 

the slope in y 
∂z

∂y
  =  2y  => 

The gradient  =  (2𝑥
2𝑦

) for instance  x = ǀ2ǀ and y = ǀ2ǀ gives   

the gradient  =  (4
4
) with the size 

ǀgrad.ǀ  =  √42 + 42  ≈  5.66   
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If we crawl up on the inside in the right corner where x = ǀ2ǀ and   

y = ǀ2ǀ, the slope thus is 5.66. 

---------- 

We may also regard it this way: 

On the figure is sketched the tangent of the figure in the “corner” 

where  x = ǀ2ǀ and y = ǀ2ǀ.    

The helping lines show one step in x:  Δx = 1 

and one step in y:  Δy = 1 

which by Pythagoras gives a “common” step of √2. 

In the height, the z-direction, we read  Δz = 8 

We calculate the “common” slope (= length of the gradient): 
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ǀgrad.ǀ  =  
8

√2
  ≈  5.66  same answer. 

---------- 

Let us compare the slope when crawling up the ”corner” (which 

was calculated as 5.66) with the slope if we crawl 8 meters up in 

“the middle”: 

In the middle we will come to the point: 

z = 8, x = 0, y = ? 

z  =  x2 + y2  y  =  8½  ≈  2.83 

which is not visible on the figure. The point lies outside of the box 

shown.  

gradient  =  (2𝑥
2𝑦

) which for  x = ǀ0ǀ  and  y = ǀ2.83ǀ gives   

gradient  =  ( 0
5.66

) with the size 

ǀgrad.ǀ  =  √02 + 5.662  ≈  5.66   

Thus, the same slope, - as was expected for this rotation 

symmetrical figure. 

---------- 

The gradient may also be written with the symbol  ∇ 
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Part 4. Vectors 

2D Vectors in the plane 

A vector describes size and direction and is sketched as an arrow 

(long or short).  

For instance it may be the size and direction of physical forces 

like strength and direction of the wind, strength and direction of 

sea currents and a lot more, - things that not just have a size (like a 

mass or an amount of money), but also a direction. 

Vector mathematics is a tool for calculation. Therefore it is 

allowed to move a vector in the calculation, as long as it maintains 

length and direction. In math! 

In physics and other fields, you cannot move a vector! It must not 

be moved away from the place of acting.  

Vectors is a tool with corresponding calculation rules designed to 

enable and/or facilitate some calculations - particularly in 3D. 

Some of the methods may seem odd at first, though surely, they 

are useful. If we want to use the vector tool, we make them 

ourselves, and do calculations with them the way, we are about to 

explain. 

Two dimensional (2D) vectors do not enable us to do calculations 

we cannot do already, but they are necessary in 3D geometry. So, 

we build up the system in 2D and receive the reward in 3D. 

Usually we call the vectors the same as the sides in a triangle,    

for instance a or AB - only with a small arrow on top. In other 

books it is maybe written a or AB, and finally is used a or AB. We 

choose the latter. 
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We may add vectors, and subtract them. We may multiply and 

divide them with a constant, but we cannot multiply and divide 

them with one another. Yet here, the special tools the dot product 

and the determinant will apply, - more about this later.   

 

Basics 

We can add vectors in two ways. One way is by putting them in 

extension of one another: 

           c The black is the ”resultant”, here: 

       a          b  the sum vector c. 

                   

The other is to let them start at the same point and form a 

parallelogram: 

b  The black is the ”resultant”, here:  

                         c the sum vector c (the same as before). 

        a 

                      

In order to differ from writing coordinates for points (in a row), 

vector coordinates are written in a column. We imagine that all 

vectors start at Origo, (x, y) = (0, 0), so that the vector 

coordinates, is the end point, the arrowhead. The vectors shown 

could be: 

a + b  =  c    =>    ( 5
−3

) + (2
2
)  =  ( 7

−1
) 

It is also seen, that we add the x coordinates separately, and we 

add the y coordinates separately. 
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Or in letters for unknown coordinates: 

a + b  =  c    =>    (𝑎1
𝑎2

) + (𝑏1
𝑏2

)  =  (𝑎1+𝑏1
𝑎2+𝑏2

)  =  (𝑐1
𝑐2

) 

---------- 

We subtract a vector by adding the negative/opposite vector: 

 

                a           b 

        c            -b 

The black is the resultant c 

a - b  =  c    =>    ( 5
−3

)  − (2
2
)  =  ( 3

−5
) 

Or in letters for unknown coordinates: 

a - b  =  c =>    (𝑎1
𝑎2

) - (𝑏1
𝑏2

)  =  (𝑎1−𝑏1
𝑎2−𝑏2

)  =  (𝑐1
𝑐2

) 

 

---------- 

We can multiply a vector by a constant (number or letter): 

k · (𝑎1
𝑎2

)  =  (𝑘·𝑎1
𝑘·𝑎2

)  or put out  (𝑘·𝑎1
𝑘·𝑎2

)  =  k · (𝑎1
𝑎2

) 

k may be everything (big, small, positive, negative) except 0. If    

k ˃ 1 the vector becomes longer. If k < 1 the vector becomes 

shorter, - actually this is the same as dividing the vector by a 

number. If k is negative (k < 0) it will be directed oppositely.  

---------- 

Instead of multiplying/dividing vectors, the scalar-product was 

made/defined. It is often called the dot product, because a dot is 
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used (similar to a multiplication dot). The technique is to multiply 

x by x and y by y, and finish by adding the two results: 

( 5
−3

)  ·  (2
2
)  =  10 + (-6)  =  4 

So we start with vectors and yield a number.  

Or with letters as unknown coordinates: 

Dot product:         a · b  =  (𝑎1
𝑎2

)  ·  (𝑏1
𝑏2

)  =  a1b1 + a2b2  =  a number 

It turns out to be useful. 

---------- 

And now to something even more special: the determinant of two 

vectors. A determinant determines something for us, but first let 

us see the calculation technique: 

The determinant:   det(a, b)  =  (𝑎1
𝑎2

  𝑏1
𝑏2

)  =  a1b2 - a2b1  =  a number 

We place vector a´s coordinates in the first column - and vector 

b´s coordinates in the second column. Then we multiply in a 

”cross”:  a1·b2  minus  a2·b1  and yield a number as the answer. 

So here, we also start with vectors and yield a number.  

For fun we calculate the dot product (â is explained next page) 

â·b  =  (−𝑎2
𝑎1

)  ·  (𝑏1
𝑏2

)  =  -a2b1 + a1b2  =  a1b2 - a2b1  =  det(a, b)   

This also turns out to be useful. 

We find a little more useful fun in this calculation:  

- det(b,a) = - (
𝑏1
𝑏2

  𝑎1
𝑎2

)  =  - (b1a2 - b2a1) =  a1b2 - a2b1  =  det(a, b)   

---------- 
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And now an old friend: We find the length of a vector by 

Pythagoras: 

ǀaǀ2  =  x2 + y2  or ǀaǀ2  =  a1
2 + a2

2 => 

here:  ǀaǀ  =  [52 + (-3)2]½  =  34½ 

 

Special vectors 

Some special vectors are shown in this diagram: 

 

Unit vector 

Normal vector 

Normal vector 

Cross vector 

Base vectors, length = 1 

Position vector 

u 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       255 
 

In mathematics, as mentioned, we imagine all vectors to start in 

Origo = (0, 0), so the vector coordinate is the end point - the 

arrowhead. Here a is shown in three places, but all three are the 

same vector, and it has the coordinates  (5
4
) . For those that do not 

start in Origo (0, 0), the coordinates are found by having: end 

minus start. For a: 

 (15−10
9−5

)  =  (5
4
) and (17−12

17−13
)  =  (5

4
)  

A vectors angle with the x-axis is 

v  =  tan-1 (
𝑦

𝑥
)    for a:  v  =  tan-1 (

4

5
)  ≈  38,7° 

If we turn a vector 90° positively (counter clock wise.), we get its 

cross-vector shown with a little hat. Its coordinates are inverted 

with a minus on the x coordinate. a’s cross-vector is 

â  =   (−4
5

)  

It is seen by a helping point P1 that also turns 90°, and becomes 

P2. P1’s x value of 5 becomes P2’s y value of 5, and the y 

distance from P1 to vector, which is 4, becomes the x distance 

from P2 to the cross vector, which is  -4. 

Other vectors orthogonal to a are called normal vectors. Normal 

here means orthogonal. The normal vectors position, direction, 

and length, are not crucial if only the vector is orthogonal to our 

vector, it is a normal vector. There is an infinite number of normal 

vectors, but only one cross vector.  

Up on the left is shown a vector with length 1. All vectors with 

length 1 are called unit vectors and we write  ǀuǀ = 1  
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Finally are shown two special unit vectors: i on the x-axis and j on 

the y-axis. They are sketched right next to the axis so that we can 

see them. They are called the base vectors. 

In all mathematics we need zero. In vector mathematics we need a 

zero vector:  0. If, for instance, we subtract a from a we get the 

zero vector: 

a - a  =  0  

 

Examples 

1. 

A vector twice as long and in the opposite direction (-) has the 

coordinates: 

 −2 · (5
4
)  =  (−10

−8
) 

 

2. 

Let us calculate the dot product of two orthogonal vectors, for 

instance a vector and its cross vector, here, a and â : 

(5
4
)  ·  (−4

5
)  =  -20 + 20  =  0 

In letters and multiplied by a constant, k, it is valid for all vectors: 

(ℎ
𝑖
)  ·  𝑘(−𝑖

ℎ
)  =  (ℎ

𝑖
) ·  (𝑘(−𝑖)

𝑘ℎ
)  =   -hki + ikh  =  0 

This proves that a vector dotted with one of its normal vectors is 

0. 
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3. 

We will check if two walls are orthogonal. We form two vectors 

in the directions of the walls at some logical places: One vector 

leads from the corner of the walls to a window 3 meters away and 

has the coordinates in millimeters 

( 0
3000

)   

the other leads from the corner of the walls in the other direction 

to a door 1,76 meters away and has the coordinates in millimeter 

(1760
10

)   

We check if the dot product yields 0: 

( 0
3000

) · (1760
10

)  =  0 + 30000  =  30000   which is  ≠  0 

No, the walls are not orthogonal. It is easy to see that the error is 

the 10 mm. 

The two vectors we formed are also called direction vectors. They may have 

other lengths, as long as they are in the right direction.  

 

4. 

a may be split in two components one in the x-direction and 

another in the y-direction. It is written this way: 

a  =  5i + 4j  =  (5
4
)   

So if we stand at Origo, walk 5 paces in x and 4 paces in y, we 

will be at the vectors end point (at the arrowhead). 

Actually, we may split a vector in the directions we want, for 

instance: 
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(5
4
)  =  (4

2
) + (1

2
)   

Which is the deposit rule. 

If a instead is called OP (because it goes from point O to point P) 

and we introduce a point Q in (4, 2) we have: 

OP  =  OQ + QP  =  (4
2
) + (1

2
)  =  (5

4
)   

Or if we will find QP: 

QP  =  OP - OQ  =  (5
4
) - (4

2
)  =  (1

2
)   

A vector that starts in O (0, 0) and leads to a known point (for instance P or 

Q) is also called a position vector because it leads from one position to 

another. 

 

Calculation rules 

There are four calculation rules for vectors. They resemble the 

standard rules of mathematics, only, we must remember that a dot 

between two vectors does not mean multiplication, it means dot.  

1. a·b  =  b·a 

2. a·(b + c)  =  a·b + a·c 

3. (ka)·b  =  a·(kb)  =  k(a·b) 

4. a2  =  a·a  =  ǀaǀ2 

Theorem 4 does not look like anything else so we will prove it. 

The right side 

a2  =  a·a  =  (𝑎1
𝑎2

)·(𝑎1
𝑎2

)  =  a1
2 + a2

2 and the left side 

ǀaǀ2  =  a1
2 + a2

2    gives the same  
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Angle 

The Formula for the angle, v, between two vectors is found using 

the dot product or the determinant. The formula using the dot 

product is derived via the cosine rule:  

a2 + b2 - 2a·b·cos C  =  c2  => here: 

ǀaǀ2 + ǀbǀ2 - 2ǀaǀ·ǀbǀ·cos v  =  ǀa-bǀ2   where  ǀaǀ = a  ,  ǀbǀ = b,  etc. 

Rule 4 gives ǀaǀ2  =  a2      

Rule 4 gives ǀbǀ2  =  b2  

Rule 4 and 2 give ǀa-bǀ2  =  (a-b)2  =  a2 + b2 – 2a·b 

Inserted  a2 + b2 - 2ǀaǀ·ǀbǀ·cos v  =  a2 + b2 - 2a·b 

Reduced  cos v  =   
𝐚·𝐛

ǀ𝒂ǀ ǀ𝐛ǀ
    

Which is the formula for the angle between two vectors. Also 

observe the uppermost figure in the diagram (next page) where it 

is shown that the opposite side to angle v is  a-b. 

Later we will present another formula that uses the determinant to calculate 

the angle between two vectors. 
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Projection 

Also, in this diagram we show vector b projected in a straight 

angle onto vector a. The resultant is ba and its coordinates depend 

on b and a, which are known.  

We find vector ba’s coordinates by forming the blue helping 

vector c and then observe that: 

ba  =  k · a    (I) ba  =  b + c  and 

c · a  =  0   since they are orthogonal 

Then, we will find k followed by finding ba: 

0  =  c · a  =  (ba - b)·a  =  (ka - b)·a  =  ka2 - a·b  =  kǀaǀ2 - a·b 

Angle 

Projection 

Determinant and 

parallelogram 
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    kǀaǀ2 - a·b  =  0          kǀaǀ2  =  a·b          k  =  
𝐚·𝐛

ǀ𝐚ǀ2
     => 

 k is inserted in (I) and yields:  

ba  =  
𝐚·𝐛

ǀ𝐚ǀ2
 · a   

which is the formula for the coordinates of the projected vector. 

Its length is found by the numerical value of the vectors: 

ǀbaǀ  =  
ǀ𝐚·𝐛ǀ

ǀ𝐚ǀ2
 · ǀaǀ  

ǀbaǀ  =  
ǀ𝐚·𝐛ǀ

ǀ𝐚ǀ
 

which is the projection-length-formula. 

 

Determinant, area and angle 

Now we shall see how to use the determinant: 

In the low part of the diagram and to the right, is shown a 

parallelogram expanded by the vectors a and b. In a usual 

calculation the area is 

Area  =  ǀaǀ ·  ǀbâǀ   

We now have two ways to continue: 

Area  =  ǀaǀ ·  ǀbâǀ    =  ǀaǀ · 
ǀâ·𝐛ǀ

ǀâǀ
   and since a and â are equally long 

Area  =  ǀâ·bǀ  which equals the determinant 

Areaparallelogram  =  ǀdet(a, b)ǀ   

So, we do not need to know ǀbâǀ to find the area. We can find it 

directly from the vectors (a and b) that expand the parallelogram. . 
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We may also find the area by:   

ǀbâǀ  =  ǀbǀ · sin v   =>  

Area  =  ǀaǀ ·  ǀbâǀ  =  ǀaǀ ·  ǀbǀ · sin v 

or briefly 

Areaparallelogram  =  ǀaǀ ·  ǀbǀ · sin v 

---------- 

Since both methods renders the area, we deduce that 

det(a, b)  =  ǀaǀ ·  ǀbǀ · sin v   

sin v  =  
det(𝐚,𝐛)

ǀ𝐚ǀ ·  ǀ𝐛ǀ
 which gives us another method of finding 

the angle between two vectors. 

The first method is via the dot product 

cos v  =   
𝐚·𝐛

ǀ𝒂ǀ ǀ𝐛ǀ
      which we found earlier. 

---------- 

There is more. Again, we consider the expression 

det(a, b)  =  ǀaǀ ·  ǀbǀ · sin v 

which is 0 if v is 0. This means, that if the determinant is 0, a and 

b are parallel:  

det(a, b)  =  0  a║b 

---------- 

Still there is more. We can also find the area of the triangle 

expanded by vector a and b: 

Areatriangle  =  
1

2
 · Areaparallelogram  =  

1

2
 · det(a, b)  =  

1

2
 · ǀaǀ·ǀbǀ · sin v 
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The straight line on vector form 

The equation for the straight line may also be written in two 

vector forms. Like before, we need two pieces of information 

about the line. We must know a point and a direction vector or a 

point and a normal vector.  

 

Every known point on the line will do. Here we call the point P0 

with the coordinates (x0, y0), which will determine the line if we 

also know the direction.   

The direction is described with a direction vector. Any direction 

vector will do (short, long, pointing forward or backwards, placed 

on the line or not) as long as it is parallel to the line.  

The direction may actually also be determined by a normal vector 

(orthogonal to the line). Any normal vector will do.  

If we imagine turning the line, the normal vector(s) will follow. 

Thus, each straight line has its own normal vector(s).  

n is a normal vector  

r is a direction vector 

r is sketched beside the 

line, so that we can see it 
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Using the direction vector, the straight line may be written as a 

vector function, which is rarely applied in 2D, but which is the 

only possibility in 3D (more later). This vector function is seen 

directly from the figure: Starting in P0 the direction vector may 

move a point (the arrow head) up and down the line by 

multiplying with a parameter called t, which may be any number. 

“Parameter” is Greek and here means “along the measured”. 

 (𝑥
𝑦

)  =   (𝑥0
𝑦0

) + t (𝑟1
𝑟2

)            which is the 2D vector function of the straight line 

By using the normal vector, the derivation is more complicated, 

but the result is more useful: 

We observe from the figure   

n  =  (𝑎
𝑏

)  

If we form a cross vector of n, we get a direction vector for the 

line: 

r  =  (−𝑏
𝑎

)            

which we insert in the vector function of the straight line: 

(𝑥
𝑦

)  =   (𝑥0
𝑦0

) + t (−𝑏
𝑎

) 

Here we split in an equation for the x-coordinate, and an equation 

for the y coordinate: 

x  =  x0 + t(-b) and y  =  y0 + ta 

This is two equations with two unknowns. We isolate in the y-

equation:  

t  =  
y−𝑦0

𝑎
  and insert into the x-equation: 

x  =  x0 + 
y−𝑦0

𝑎
 · (-b)   
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x - x0  =  
y−𝑦0

𝑎
 · (-b)   

a(x - x0)  =  -b(y - y0)   

a(x - x0) + b(y - y0)  =  0 

This is the equation on vector form of the straight line. a and b are 

the coordinates of a normal vector, and (x0, y0) is a point on the 

line. 

We may go on by multiplication into the parenthesis: 

ax - ax0 + by - by0  =  0 

and if we substitute   - ax0 - by0   by c, we have: 

ax + by + c  =  0 

which is easier in some cases, and which is often listed in tables. 

We will soon use it in this form in the distance formula.  

Thus, we have two equations for the straight line in ”ordinary” 

mathematics, and two (or three) equations within vector 

mathematics. Please note that a and b do not mean the same in the 

two systems. 

 

Distance point-line 

Vector mathematics can also be utilized to find the shortest 

distance (perpendicular) d from a point P to a line l. 
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For the derivation we need an arbitrary point on the line, which 

we call P0(x0, y0), and a normal vector for the line  

n  =  (𝑎
𝑏

)  

For simplicity we sketch the normal vector from l to P, - but any 

normal vector may be used. 

We imagine a vector from P0 to P (not sketched). If we project 

P0P on to n we get a vector, d long. Then, applying the formerly 

derived projection formula: 

ǀbaǀ  =  
ǀ𝐚·𝐛ǀ

ǀ𝐚ǀ
  here 

d  =  
ǀ𝐏˳𝐏 · 𝐧ǀ

ǀ𝐧ǀ
 

numerator:  (𝑥1−𝑥0
𝑦1−𝑦0

)·(𝑎
𝑏

)  =  ax1 - ax0 + by1 - by0 

P0 is on l, so   - ax0 - by0   is substituted by c, as before. 

Point P   d is distance   

l is a line 
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and denominator:   √𝑎2 + 𝑏2 

inserted in the expression of d yields a formula for the distance 

between point and line (d for distance) 

d  =  
ǀ a𝑥1+b𝑦1+ c ǀ

√𝑎2+ 𝑏2
  

x1 and y1 are coordinates of the point, and a, b, and c are from the 

equation of the straight line in vector form.  

 

Examples 

1. 

Let us find the angle between the two walls in a previous example, 

where the direction vectors were 

( 0
3000

)  and  (1760
10

)    in millimeters 

First, we have 

cos v  =   
𝐚·𝐛

ǀ𝒂ǀ ǀ𝐛ǀ
      where 

numerator ( 0
3000

) · (1760
10

)  =  0 + 30,000  =  30,000 

denominator               (02 + 30002)½ · (17602 + 102)½  =  5,280,085 

combined  v  =  cos-1 (
30,000

5,280,085
)  =  89.67° 

Which shows a small skewness.  

---------- 

Then in meters 

(0
3
)  and  (1.760

0.01
)   
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and now using 

sin v  =  
det(𝐚,𝐛)

ǀ𝐚ǀ ·  ǀ𝐛ǀ
 where 

numerator  (0     1.76
3     0.01

)  =  0 - 3·1.76  =  - 5.28 

denominator (02 + 32)½ · (1.7602 + 0.012)½  =  5.280085 

combined  v  =  sin-1 (
−5.28

5.280085
)  =  (-) 89.67° 

Same angle as before. Naturally. The reason for the minus is the 

order of a and b, when calculating the determinant. At b before a, 

it would have been plus. Thus, we need to interfere and interpret 

the answer: The two formulas yield the same answer. If not so, we 

had made an error.  

 

2. 

We will project a vector   b  =  (1
5
)  on a straight line with the 

equation           y  =  x + 3    

What will be the coordinates of the projected vector, and how long 

is it? 

We use the projection formula, which has b projected on a: 

ba  =  
𝐚·𝐛

ǀ𝐚ǀ2
 · a    

our b is (1
5
)   

our a we must form from a direction vector for the line. The slope 

is 1, so  (1
1
)  is a direction vector and is now our a: 

numerator  a · b  =  (1
1
) · (1

5
)  =  1 + 5  =  6 
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denominator ǀaǀ2  =  ((12 + 12)½)2  =  2 

Combined with a yields 

ba  = 
6

2
 (1

1
)  =  3(1

1
)  =  (3

3
)   

 

Length 

ǀbaǀ  =  
ǀ𝐚·𝐛ǀ

ǀ𝐚ǀ
 

numerator  ǀ6ǀ  =  6 

denominator (12 + 12)½  = √2    

combined  ǀbaǀ  =  
6

√2
  ≈  4.24 

Controlling, we may use Pythagoras for ba’s coordinates: 

ǀbaǀ  =  (32 + 32)½  =  √18  ≈  4.24  same answer 

 

3. 

A parallelogram is expanded by the vectors  (5
3
)  and  (3

4
)           

What is the area? 

Areaparallelogram  =  det(a, b)   => 

A  =  (5    3
3     4

)  =  5·4 - 3·3  =  20 - 9  =  11 

and if we change the order of the vectors: 

A  =  (3    5
4     3

)  =  3·3 - 4·5  =  9 - 20  =  -11 

Here we must interfere, since an area can only be positive  

ǀAǀ  =  11 
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Then we have the same answer. 

 

4. 

A triangle is expanded by the vectors  (5
3
)  and  (3

4
)                     

What is the area? 

Areatriangle  =  
1

2
 · det(a, b)   => 

A  =   
1

2
· (5    3

3     4
)  = 

1

2
 · (5·4 - 3·3)  =  

11

2
  =  5,5 

 

5. 

A straight line passes through point (6,8) and has a normal vector 

(3
4
)   What is the lines equation? 

a(x - x0) + b(y - y0)  =  0 => 

3(x - 6) + 4(y - 8)  =  0   

3x - 18 + 4y - 32  =  0   

3x + 4y - 50  =  0  which is the answer 

 

The equation in ”ordinary” mathematics will be: 

y  =  ax + b 

where a now is the slope, and b now is the y-value where the line 

intersects the y-axis! 

3x + 4y - 50  =  0  

4y  =  -3x + 50  
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y  =  - 
3

4
 x + 

25

2
   

Thus, a line with the slope  - 
3

4
   and with intersecting the y-axis in 

point  (0, 
25

2
).  

 

6. 

What is the distance between point  (2,1)  and line  y = - 
3

4
 x + 

25

2
  ? 

We need the line on vector form, so we change it 

y  =  - 
3

4
 x + 

25

2
    

4y  =  -3x + 50  

3x + 4y - 50  =  0 

and use the distance formula 

d  =  
ǀ a𝑥1+b𝑦1+ c ǀ

√𝑎2+ 𝑏2
 => 

d  =  
ǀ 3·2+4·1−50 ǀ

√32+ 42
  

d  =  
ǀ−40ǀ

√25
    

d  =  8 
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Polar coordinates in 2D 

Coordinates may also be specified as polar coordinates which is: 

(distance from Origo , angle with the +x axis), see the figure: 

 

This may be an advance in aviation techniques, etc., particularly 

when we expand to 3D.  

Conversion between Cartesian (ordinary) coordinates, position 

vector coordinates and polar coordinates is shown in this table:

    

      Coordinates         Length/distance 

Cartesian      P(x,y)              r = (x2 + y2)½   

Pos. vector      OP = r = (𝑥
𝑦

) = (𝑟·cos Ɵ
𝑟·sin Ɵ

)        ǀrǀ = ǀOPǀ = (x2 + y2)½ 

Polar      P(r,Ɵ)            r = [(r·cos Ɵ)2 + (r·sin Ɵ)2]½
 

 

It appears that length/distance is Pythagoras in all three cases.  

Polar coordinates are referred to in other literature, yet they will be considered a 

little more, when dealing with complex numbers at the end of this book.  

P(r,Ɵ)  Polar  

P(x,y)  Cartesian 

r = distance 

Ɵ = angle 
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Vector functions (parametric curves) in 2D 

If we consider a function that goes forth and back in the x-

direction (for instance a circle function), there is no longer just 

one y-value for each x-value. Then we must describe it as a vector 

function, and its curve in a coordinate system is called a 

parametric curve. We introduce a parameter, usually called t, since 

the parameter is often time or proportional with time. Thus, the 

parameter defines where we are on the curve.  

We write the vector function this way 

r(t)  =  (𝑥
𝑦

)  =  (𝑓(𝑡)
𝑔(𝑡)

)              which is the definition of a vector function 

A vector function in 2D may be seen as one equation describing x 

as a function of t, and another equation that describes y as a 

function of t. 

 

The vector function for a straight line 

Let us consider an example we know already, namely the straight 

line 

(𝑥
𝑦

)  =   (𝑥0
𝑦0

) + t (𝑟1
𝑟2

)            the vector function of a straight line in 2D          

 (𝑥
𝑦

)  =   (𝑥0+𝑡·𝑟1
𝑦0+𝑡·𝑟2

) 

or as two equations 

x(t)  =  x0 + t·r1 and y(t)  =  y0 + t·r2 

A straight line does not go forth and back in the x-direction, so we 

do not really need this vector function but it is a fine example. 
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The vector function of a circle 

The circles equation is known to us 

(x - a)2 + (y - b)2  =  r2 

which we found by Pythagoras, and which gives us a still image 

of the coordinates (x,y) for a point on the circle. But if, for 

instance, we know a, b, y and r, and isolate x, we have a second 

degree equation with two roots for x. If we want just one root, we 

have to find the circles vector function: 

Again, we consider the unit circle 

 

and change the symbols 
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Now, Origo is the local centre of a non-rotating (still) machine 

placed in a building. Relative to the coordinate system of the 

building our Origo has the coordinates O(a,b).  

The point P (a painted dot on the rotor) has the distance r (radius) 

from the centre (O) and is described by the position vector (also 

called radius vector), r.  

The angle v, measured in degrees, is now the angle Ɵ (the Greek 

letter teta) measured in radians. 

Relative to the machines own local coordinate system, P has the 

coordinates 

P(r·cos Ɵ, r·sin Ɵ)   

and the vector function with position vector r becomes 

r(Ɵ)  =  (𝑥
𝑦

)  =  (r·cos Ɵ
r·sin Ɵ

) now Ɵ is the parameter 

Relative to the buildings coordinate system, r has the coordinates 

r(Ɵ)  =  (𝑥
𝑦

)  =  (a + r·cos Ɵ
b + r·sin Ɵ

) 
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which is the circle’s fully expanded vector function (or parametric 

function). 

Please note that now Ɵ is the variable. The position r depends on 

the angle (the parameter) Ɵ.  

 

Differentiation of vector functions 

The parametric curves of vector functions have tangents. The 

slope of a tangent is found by differentiating as we are used to 

following the same calculation rules. The novelty is to split into an 

equation for x and an equation for y, which are differentiated 

separately with respect to t. So: how does x change when t 

changes? and how does y change, when t changes? We observe 

this by the differential coefficient 

r´(t)  =  (𝑥´(𝑡)
𝑦´(𝑡)

)  =  (
𝑑𝑥

𝑑𝑡
𝑑𝑦

𝑑𝑡

) 

Vector functions may have vertical tangents.  

 

Differentiation of the vector function of a straight line 

Let us again look at the example we know already, the straight 

line. We know that the differential coefficient shall render the 

constant slope, a. Let us see: 

(𝑥
𝑦

)  =   (𝑥0
𝑦0

) + t (𝑟1
𝑟2

)               => 

x(t)  =  x0 + t·r1 and y(t)  =  y0 + t·r2 => 

x´(t) =  0 + r1 and y´(t) =  0 + r2  => 

(𝑥´(𝑡)
𝑦´(𝑡)

)  =  (𝑟1
𝑟2

)          which is a direction vector giving the slope: 
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slope  =  
dy

dx
  =  

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

  =  
y´(t)

x´(t)
  =  

𝑟2

𝑟1
  =  a 

Thus, when we differentiate the vector function of the line, we can 

get the slope, which we usually call a. So, it corresponds with 

what we already know. 

 

Differentiation of the vector function of the circle 

r(Ɵ)  =  (𝑥
𝑦

)  =  (a + r·cos Ɵ
b + r·sin Ɵ

) Ɵ is the parameter => 

We differentiate with respect to Ɵ and get 

r´(Ɵ)  =  (𝑥´
𝑦´

)  =  (− r·sin Ɵ
r·cos Ɵ

)   

We see that (a,b) disappears (which corresponds to the fact, that the 

position of the circle in the building surely has no influence on the tangent 

slope of the circle). Also, we see that r´ has an x-coordinate similar 

to the y-coordinate for r, only opposite (minus), and that r´ has a 

y-coordinate similar to the x-coordinate for r. Thus, r´ is turned 

90° relative to r (which corresponds with the direction of the tangent). 

Displayed in a simplified figure: 

    r´    

     

              r 

 

 

If we differentiate once more (the second order differential 

coefficient, the second order derivative) we get 
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r´´(Ɵ)  =  (𝑥´´
𝑦´´

)  =  (− r·cos Ɵ
− r·sin Ɵ

)  

which is a vector r´´ directed opposite (due to minus for both x 

and y) to r. 

Displayed in a simple figure: 

   r´ 

 

   

                r´´ 

 

The first derivative is tangent to the circle, as expected.  

The second derivative has no immediate significance in 

mathematics, but it does in physics, as can be seen in the 

following example.  

 

Example 1 

Now the machine rotates with a constant speed (constant angular 

velocity) and we watch the point P (the painted dot).  

Furthermore, we define the constant angular velocity: 

constant angular velocity  =  
𝑎𝑛𝑔𝑙𝑒 𝑡𝑢𝑟𝑛𝑒𝑑 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠

𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
  => 

ω  =  
Ɵ

𝑡
        Ɵ  =  ωt 

Since ω is constant, the variable changes from Ɵ to t, and the three 

equations are 
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r(t)  =  (𝑥
𝑦

)  =  (a + r·cos ωt
b + r·sin ωt

)   => 

r´(t)  =  (𝑥´
𝑦´

)  =  (− rω·sin ωt
rω·cos ωt

)   diff. “outer, inner” => 

r´´(t)  =  (𝑥´´
𝑦´´

)  =  (− r𝜔2·cos ωt
− r𝜔2·sin ωt

)   diff. “outer, inner”  

r is the position 

r´ is called the tangential velocity vtan 

r´´ is called the centripetal acceleration ac  

As observed, the centripetal acceleration is directed toward the 

centre of the circle, which is the case for all circular motions with 

a constant speed.   

Circular motion with variable speed also have a centripetal acceleration 

directed toward the centre (otherwise there would be no circular motion), - 

which, with a tangential acceleration comprise the whole acceleration (two 

components). 

 

2. 

Let us try to find the formulas for the size of vtan and ac: 

Pythagoras for vtan  

vtan  =  [(- rω·sin ωt)2 + (rω·cos ωt)2]½   

vtan  =  [(r2ω2((sin ωt)2 + (cos ωt)2)]½   

and by the base relation:  (sin v)2 + (cos v)2  =  12 

it all becomes much shorter:   => 

vtan  =  ωr  which is the formula for the size of the tangential 

velocity 
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Pythagoras for ac 

ac  =  [(- rω2·cos ωt)2 + (- rω2·sin ωt)2]½  

ac  =  [(r2ω4((sin ωt)2 + (cos ωt)2)]½            base relation 

ac  =  rω2 which is the formula for the size of the centripetal 

acceleration  

 

Double points 

 

 

    

If the curve of a vector function intersects itself, we have a double 

point. It is easier to find the double point by sketching the curve in 

a diagram and read the coordinates, i.e. a graphic solution. A task 

for CAS. 

The definition of a double point is  

r(t1) = r(t2)  => (𝑥(𝑡1)
𝑦(𝑡1)

)  =  (𝑥(𝑡2)
y(𝑡2)

) 

A double point has the same values of x, and the same values of y. 

The difference is t.  

 

Example 

We will investigate if there is/are double point(s), and find the 

coordinates, in the vector function 

r(t)  =  (t3−𝑡
𝑡2−1

) => 
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r(t1)  =  (
𝑡1

3−𝑡1

𝑡1
2−1

)   r(t2)  =  (
𝑡2

3−𝑡2

𝑡2
2−1

)   

In the double point we have 

x1  =  x2  => t1
3 - t1  =  t2

3 - t2  equation 1 and 

y1  =  y2  => t1
2 - 1  =  t2

2 - 1  equation 2 

Thus, two equations with two unknowns. If we solve by CAS we 

have  t1 = ± 1  and  t2 = ± 1 

So we get to the double point at   t = -1   and again at   t =1 

---------- 

The equations are difficult to solve manually, but we will try: 

2.    t1
2 - 1  =  t2

2 - 1  t1
2  =  t2

2  

At first  t1 = t2  but that is false, since the roots must be 

different. The only true answer is: 

t1 = -t2    

which we insert into equation 1: 

1. t1
3 - t1  =  t2

3 - t2 => (-t2)
3 + t2  =  t2

3 - t2     

 -t2
3 - t2

3  =  -t2 - t2  => -2t2
3  =  -2t2             

 t2
3  =  t2    

which is a third degree equation with up to three roots, found by 

guessing:  0 is ok, 1 is ok, -1 is ok. Inserted into equation 2: 

2. t2 = 0  =>  t1 = 0         t2 = 1  =>  t1 = -1         t2 = -1  =>  t1 = 1 

Since t1 and t2 must be different, 0 is no root. Left are the roots:                     

t1 = ±1   and   t2 = ±1. 

Same answer as using CAS. 

---------- 
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Thus we get to the double point at  t = -1  and again at  t =1 

Then we find the x and y coordinates of the double point: 

We insert  t = 1    =>  r(t1)  =  (0
0
)        and r(t2)  =  (0

0
)   

and insert  t = -1  =>  r(t1)  =  (0
0
)        and r(t2)  =  (0

0
) 

Thus, one double point with the coordinates    (x, y)  =  (0, 0) 

Let us finish the example by displaying the curve in a diagram: 

 

Compliance.  

---------- 

Vector functions may have horizontal and/or vertical tangent(s) for:   

horizontal:   
𝑑𝑦

𝑑𝑡
 = y´(t) = 0       and       vertical:   

𝑑𝑥

𝑑𝑡
 = x´(t) = 0  

In the example: 

Horizontal tangent in point: y´(t) = 2t = 0   =>   t = 0   =>   (x,y) = (0,-1)   

Vertical:    x´(t) = 3t2 - 1 = 0   =>   t = ± 0.58   =>   (x,y)  = (0.38 ; -0.67)  and  (-0.38 ; -0.67)  

Vector function: 
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3D Vectors in the space 

The vector tool is very useful working in 3D, in the space. Here 

with the z-axis (the third axis) out from the plane of the paper:  

 

The unit base vectors are sketched slightly beside the axis, so that we can see 

them.  

The coordinate system may be sketched in other positions, as long 

as the order is x, y, z in the positive direction (counter clock wise). 

Most formulas are the same as for 2D. They only need to be 

expanded by the third coordinate we call z, - then it is 3D. The 

calculation technique is also the same.   

 

 

 

3D coordinate system with axis 

x, y, z and unit direction vectors 

i, j, k 
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The differences are:  

 The determinant does not exist in 3D 

 The cross vector is not in use in 3D. 

 A normal vector may now be found from a novel, a little odd, 

tool called the cross product or the vector product.  

In the diagram, we display a position vector a in 3D in a 

coordinate system.   

 

3D coordinate system with the z-axis 

(third axis) pointing out from the 

plane of the paper. 

Here 
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We also see a 3D version of Pythagoras, with the z-coordinate 

added. It derives this way: 

a may be split in a vector from O (Origo) to P1 with the length 

 (x2 + y2)½  plus a vector in the z-direction from P1 to P2 with the 

length  z. These two vectors are orthogonal, so Pythagoras applies: 

ǀaǀ2  =  [(x2 + y2)½]2 + z2   => 

ǀaǀ2  =  (x2 + y2) + z2     

ǀaǀ2  =  x2 + y2 + z2     

ǀaǀ  =  (x2 + y2 + z2)½   

Which also may be written as a square root, as shown in the 

diagram.   

 

Distance point-point 

The distance between two points P1(x1, y1, z1) and P2(x2, y2, z2) is 

also found from Pythagoras. 

ǀP1P2ǀ  =  ((x2 - x1)
2 + (y2 - y1)

2 + (z2 - z1)
2)½   

 

Examples 

1. 

We have two vectors  a  =  (
5
3

−2
)    and   𝐛 =  (

−1
−6
7

) 

Their sum is   a + b  =  (
5
3

−2
) + (

−1
−6
7

)  =  (
4

−3
5

) 
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and difference   a - b  =  (
5
3

−2
) − (

−1
−6
7

)  =  (
6
9

−9
) 

and    b - a  =  (
−1
−6
7

) − (
5
3

−2
)  =  (

−6
−9
9

) 

x coordinates alone, y alone, and z alone. 

 

2. 

A vector twice (2) as long as a in the diagram and in the opposite 

direction (-) has the coordinates 

 −2 · (
5
3

−2
) = (

−10
−6
4

)  =  -2a 

 

3. 

Let us calculate the dot product of two 3D vectors, for instance a 

and -2a 

𝐚 · (−2)𝐚 =  (
5
3

−2
) · (

−10
−6
4

)  =  (-50) + (-18) + (-8)  =  -76 

 

4. 

a may be split in three components, one in the x direction, one in 

y, and one in z. We write it this way: 
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a  =  5i + 3j + (-2)k  =  (
5
3

−2
) 

So if we stand at Origo and walk 5 paces in x, 3 paces in y, and 2 

paces in -z, we will be at the vectors end point (arrowhead). 

Also in 3D, we may split a vector in the components you want to, 

for instance: 

(
5
3

−2
)  =  (

1
0
2

) + (
4
3

−4
)   

The deposit rule. 

If, instead of a, we use the name OP (because it leads from point 

O to point P) and introduce a point Q in (1, 0, 2) , we have: 

OP  =  OQ + QP  =  (
1
0
2

) + (
4
3

−4
)  =  (

5
3

−2
)  

We go from O to Q and on to P. Combined from O to P. 

Or if we will find QP: 

QP  =  OP – OQ  =  (
5
3

−2
) - (

1
0
2

) =  (
4
3

−4
) 

 

5. 

The distance between two points A(1, -1, 8) and B(-2, 3, -3) is 

ǀP1P2ǀ  =  ((x2 - x1)
2 + (y2 - y1)

2 + (z2 - z1)
2)½          => here 

ǀABǀ  =  ((-2) - 1)2 + (3 - (-1))2 + ((-3) - 8)2)½  ≈  12,08   
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More theory 

The cross product (the vector product) 

The cross product of two vectors is written this way: 

a × b  =  (

𝑎1

𝑎2

𝑎3

) × (

𝑏1

𝑏2

𝑏3

)  =  (

𝑑23

𝑑31

𝑑12

)   d for determinant. 

and is calculated by putting 3 determinants on top of each other 

and multiply in a “cross” (just like the determinant in 2D): 

(𝑎2   𝑏2
𝑎3   𝑏3

)  =  a2b3 - a3b2  =  d23  =  a number for the new vectors x value 

(𝑎3  𝑏3
𝑎1   𝑏1

)  =  a3b1 - a1b3  =  d31  =  a number for the new vectors y value  

(𝑎1   𝑏1
𝑎2   𝑏2

)  =  a1b2 - a2b1  =  d12  =  a number for the new vectors z value 

Rendering a new vector with the calculated coordinates. 

Peculiar, but as for the dot product and the 2D-determinant it turns 

out to be useful.  

Namely, it turns out that the cross vector is orthogonal on both of 

the original vectors, here: a and b. This we find, because the dot 

products are zero: 

a · (a × b)  =  (

𝑎1

𝑎2

𝑎3

) · (

𝑎2

𝑎3

𝑎1

𝑏3 − 
𝑏1 −
𝑏2 −

𝑎3

𝑎1

𝑎2

𝑏2

𝑏3

𝑏1

)  =   

(a1a2b3 - a1a3b2) + (a2a3b1 - a2a1b3) + (a3a1b2 - a3a2b1)  =  0 

the dot product is zero meaning a and the cross vector (a × b) is 

orthogonal. A similar calculation shows that b and (a × b) are 

orthogonal too. Thus, the cross vector is a normal vector to both a 

and b.  
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a × b (b × 𝐚 would give the opposite cross vector) 

                b 

          v 

          a 

 

Thus, we have a tool to find a normal vector for a and b, which 

turns out to be crucial in the coming formulas.  

 

The angle between two vectors 

Just like calculating the angle between two vectors using the dot 

product 

cos v  =   
𝐚·𝐛

ǀ𝒂ǀ ǀ𝐛ǀ
       proved in 2D, also valid in 3D 

and the determinant from 2D 

sin v  =  
det(𝐚,𝐛)

ǀ𝐚ǀ ·  ǀ𝐛ǀ
  proved in 2D, only valid in 2D 

we may find the angle using the cross product in 3D 

sin v  =  
ǀ𝐚 × 𝐛ǀ

ǀ𝐚ǀ ·  ǀ𝐛ǀ
  to be shown with numbers in 3D 

It appears, that the determinant in 2D has become the cross 

product in 3D. A proof in letters for this formula is very long. 

Instead we show it with numbers in a following example.  

 

Area 

We can also find the area of the parallelogram expanded by the 

two vectors a and b. We know from 2D: 
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Areaparallelogram  =  ǀaǀ ·  ǀbǀ · sin v 

If we compare this equation with the formula above in the form 

ǀ𝐚 ×  𝐛ǀ  =  ǀaǀ ·  ǀbǀ · sin v 

we find the area of the parallelogram the vectors expand 

Areaparallelogram  =  ǀ𝐚 ×  𝐛ǀ 

and for the triangle the vectors expand 

Areatriangle  =  
1

2
 · ǀ𝐚 ×  𝐛ǀ 

 

The equation of the plane 

A plane may be a wall (straight or oblique), a floor, a roof side, 

etc. We need to know the equation of a plane. A plane is a 2D 

figure, but it may have an oblique position in a 3D coordinate 

system and must consequently have a 3D formula. A plane is 

infinite in its two directions, but its image may be limited:  
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We must know three things about a plane, usually three points. 

They are used to form two vectors and their cross vector, which 

then is a normal vector of the plane.  

Try to hold a book, and put a pencil orthogonally to the front or 

back (that does not matter). Imagine the pencil sits firmly. If the 

book is turned, the pencil will follow. So the normal vector 

”belongs” to the plane and may be used in the planes equation:  

Point coordinates 
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In the figure, the known points are used to form two vectors P0P 

and P0Q. Their cross product gives a normal vector n. We know 

that two orthogonal vectors have a dot product of 0 

P0Q · n  =  0  => 

(

𝑥 − 𝑥0

𝑦 − 𝑦0

𝑧 − 𝑧0

) · (
𝑎
𝑏
𝑐

)  =  0   

a(x - x0) + b(y - y0) + c(z - z0)  =  0 

which is the planes equation, where a, b, c are the coordinates for 

a normal vector of the plane, and x0, y0, z0 are the coordinates of a 

point in the plane. 

If we multiply into the parenthesis 

ax - ax0 + by - by0 + cz - cz0  =  0  => 

Since P0 is a known point in the plane, P0’s coordinates will fulfil 

the planes equation. Therefore we regard  - ax0 - by0 - cz0  as a 

known size called d. Thus 

ax + by + cz + d  =  0 

is a short version of the plane’s equation. 

 

Distance point-plane 

In the diagram is also shown a point R with the perpendicular 

distance dist. to the plane.  

The distance formula point-plane is derived like this: 

We form a vector P0R from the two points in the diagram (the 

vector is not sketched) 
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P0R  =  (

𝑥1 − 𝑥0

𝑦1 − 𝑦0

𝑧1 − 𝑧0

) 

which we project onto the normal vector of the plane 

n  =  (
𝑎
𝑏
𝑐

) 

by using the projection-length-formula 

ǀbaǀ  =  
ǀ𝐚·𝐛ǀ

ǀ𝐚ǀ
 

which in our case is 

dist.  =  
ǀ𝐏˳𝐑 · 𝐧ǀ

ǀ𝐧ǀ
 

The numerator is 

│ (

𝑥1 − 𝑥0

𝑦1 − 𝑦0

𝑧1 − 𝑧0

) · (
𝑎
𝑏
𝑐

) │  =  ǀ ax1 - ax0 + by1 - by0 + cz1 - cz0 ǀ 

as before we substitute   - ax0 - by0 - cz0  =  d  => 

ǀ ax1 + by1 + cz1 + d ǀ 

The denominator is  

 √𝑎2 + 𝑏2 + 𝑐2   (Pythagoras) 

Combined we have 

dist.  =  
ǀ a𝑥1+b𝑦1+ c𝑧1+d ǀ

√𝑎2+ 𝑏2+𝑐2
 

where x1, y1, z1 are the coordinates of the point, - and a, b, c, d 

come from the short version of the plane’s equation. 
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Examples 

1. 

Find the angle between two vectors and the area of the 

parallelogram they expand, when 

a = (
1
2
3

)  and  b = (
−1
−2
3

)   

The angle is calculated via the dot product in 

cos v  =   
𝐚·𝐛

ǀ𝒂ǀ ǀ𝐛ǀ
       

where the numerator                (
1
2
3

)·(
−1
−2
3

)  =  -1 - 4 + 9  =  4 

and the denominator      (12 + 22 + 32)½ · ((-1)2 + (-2)2 + 32)½  =  14 

Combined                 cos v  =   
4

14
         v  =  cos-1(

4

14
)  ≈  73.4° 

---------- 

Let us see the same using the cross product 

sin v  =  
ǀ𝐚 × 𝐛ǀ

ǀ𝐚ǀ ·  ǀ𝐛ǀ
 

numerator        (
1
2
3

) × (
−1
−2
3

)  =  (

2 · 3 − 3 · (−2)

3 · (−1) − 1 · 3
1 · (−2) − 2 · (−1)

)  =  (
12
−6
0

) 

numerator        │(
12
−6
0

) │ =  (122 + (-6)2 + 02)½  =  180½ = √180   

denominator      (12 + 22 + 32)½ · ((-1)2 + (-2)2 + 32)½  =  14 
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Combined        sin v  =  
√180  

14
    v  =  sin-1(

√180  

14
)  ≈  73.4° 

Same answer. 

The area of the parallelogram the vectors expan, we chose to 

calculate by 

Areaparallelogram  =  ǀ𝐚 ×  𝐛ǀ => here 

Areaparallelogram  =  √180   ≈  13.4 

since the cross product was calculated above. 

 

2. 

Let us find the equation of a plane with a normal vector   

n  =  (
−1
5
2

)   and a point  P0(4, 3, -5) => 

a(x - x0) + b(y - y0) + c(z - z0)  =  0  => here 

-1(x - 4) + 5(y - 3) + 2(z - (-5))  =  0  

-x + 4 + 5y - 15 + 2z + 10  =  0   

-x + 5y + 2z -1  =  0    

x - 5y - 2z + 1  =  0 

which is the equation of our plane. 

Here we display this plane in a 3D plot: 
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3. 

The distance from point (2, 0, 3) to plane  x - 5y - 2z + 1 = 0  is 

dist. =  
ǀ a𝑥1+b𝑦1+ c𝑧1+d ǀ

√𝑎2+ 𝑏2+𝑐2
  =  

ǀ 1·2+(−5)·0+(−2)·3+1 ǀ

√22+ 02+32
  =  

3

√13
  ≈ 0.832 

 

The straight line in space 

We have seen five equations for the straight line: Two in ordinary 

mathematics and three in 2D vector mathematics, where the third 

is a vector function displaying a parametric curve. 

When we look at the possibilities for an equation of the straight 

line in 3D, we can only use the vector function based on a point P0 

on the line and a known direction vector of the line. Just like in 

2D, only now with the z coordinate added.  
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The vector function of the straight line deduces directly from line 

l1 in the diagram. Starting from point P0 the direction vector may 

move a point (the arrow head) up and down the line by 

multiplying with a parameter, we call t (parameter is Greek and 

here it means “along the measured”), and may be any real number: 

(
𝑥
𝑦
𝑧

)  =   (

𝑥0

𝑦0

𝑧0

) + t (

𝑟1

𝑟2

𝑟3

) 

Shortest distance 

The direction vector is sketched next 

to the line so that we can see it. 
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which is the vector function (parametric function) of a straight line 

in 3D, where x0, y0, z0 are coordinates of a point on the line, and t 

is the parameter. r1, r2, r3 is a direction vector. 

Lines may be parallel, intersecting, or as in most cases: skewed 

lines. 

If there is more than just one line, the parameters must have 

different names, for instance t, s, etc. for each line. 

 

The distance (shortest) between skewed lines 

The diagram also shows line l2 and the line between l1 and l2 with 

the shortest distance. Only one line fulfils this, and it is orthogonal 

with both l1 and l2.  

Both lines have a known point we now call P1 and P2 (though not 

shown), and both lines have a known direction vector we call r1 

and r2 (though not shown). 

If we cross r1 and r2 we have a normal vector n which only can be 

placed on the distance line. 

We now form a vector P1P2 (not shown) and project it on to n 

using the projection-length-formula. This will render the shortest 

distance between the lines: 

ǀbaǀ  =  
ǀ𝐚·𝐛ǀ

ǀ𝐚ǀ
 in our case  => 

dist.(l1,l2)  =  
ǀ𝐧 ·𝐏1𝐏2ǀ

ǀ𝐧ǀ
 

where P1 is a point on line l1 and P2 is a point on line l2, while n is 

a common normal vector for the direction vectors of the lines.   
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The distance (shortest) point-line 

The distance (d) from a point (P) to a line, is the same as the 

distance from the point to the direction vector of the line, thus 

from P to r. 

 

P0 is a known point on the line. We form a vector P0P with the 

angle v between P0P and l (not shown). Then  

d  =  ǀ P0P ǀ · sin v 

sin v  is found from the formula we have shown in an example: 

sin v  =  
ǀ𝐚 × 𝐛ǀ

ǀ𝐚ǀ ·  ǀ𝐛ǀ
  here 

sin v  =   
ǀ𝐫 × 𝐏0𝐏ǀ

ǀ𝐫ǀ ·  ǀ𝐏0𝐏ǀ
   => inserted in d 
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d  =  ǀ P0P ǀ · 
ǀ𝐫 × 𝐏0𝐏ǀ

ǀ𝐫ǀ ·  ǀ𝐏0𝐏ǀ
    

d  =  
ǀ𝐫 × 𝐏0𝐏ǀ

ǀ𝐫ǀ 
  

which is the distance formula point-line, where P is the point, r is 

the direction vector of the line, and P0 is a point on the line. 

 

The distance between two parallel planes 

Planes are parallel if their normal vectors are proportional, for 

instance 

x - 5y - 2z + 1  =  0      and -2x + 10y +4z  =  0 

where it is seen that 

(
−2
10
4

) + (-2)·(
1

−5
−2

) the proportionality factor is  -2 

Then, the distance is found by selecting a point in the one plane, 

and calculate the distance to the other plane using the distance 

formula point-plane.  

 

The angle v between two planes 

equals the angle between their normal vectors, which may be 

found in two ways, as shown earlier.  

Either via the dot product 

cos v  =   
𝐧1·𝐧2

ǀ𝐧1ǀ · ǀ𝐧2ǀ
   

or via the cross product 
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sin v  =  
ǀ𝐧1 × 𝐧2ǀ

ǀ𝐧1ǀ ·  ǀ𝐧2ǀ
  

and then finish by the inverse function to isolate the angle (here 

called v). 

The normal vector may be directed away from either side of the 

plane, so depending on the side chosen, we find either the acute 

angle (< 90°) or the obtuse angle (> 90°) between the planes. 

 

The angle between line and plane 

is found by the angle u between the direction vector of the line, 

and the normal vector of the plane. As above, it may be done 

either via the dot product 

cos u  =   
𝐫·𝐧

ǀ𝐫ǀ · ǀ𝐧ǀ
   

or via the cross product 

sin u  =  
ǀ𝐫 × 𝐧ǀ

ǀ𝐫ǀ ·  ǀ𝐧ǀ
  

and go on by using the inverse function to isolate u. Finally, the 

angle v between line and plane is calculated by taking into 

account that n is turned 90° relative to the plane. Furthermore, 

since n may be on either side of the plane, our v must be found by  

either v  =  90° - u or v  =  u - 90° 

which is seen from the figure: 

             n                      Line   

                  u      v                  v 

   Plane            u  

       n  
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Examples 

1. 

We now chose a local coordinate system, where x and y are 

horizontal and z is vertical. This is often applied outdoors in the 

terrain. Surveyors utilize both global systems (gps) as well as local systems 

relative to known fixed points like the corner stone of an old building. 

 

  z     

      

       x                                  y 

 

We will find the distance between two lines and calculate in 

meters: 

---------- 

The underside of a railway overpass follows a straight line 

through point (10, 10, 7) and has a direction vector  (
2
3
0

) which 

renders this vector function 

(
𝑥
𝑦
𝑧

)  =   (

x0

y0

z0

) + t (
𝑎
𝑏
𝑐

)       =>      (
𝑥
𝑦
𝑧

)  =   (
10
10
7

) + t (
2
3
0

)  

It is observed, that the direction vectors z coordinate is 0, thus the 

line (here the railway overpass) is horizontal. 

---------- 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       303 
 

The top of a motorway follows a straight line through point        

(5, 6, 2) and has a direction vector  (
−1
5

0.2
)  which renders this 

vector function 

(
𝑥
𝑦
𝑧

)  =   (

x0

y0

z0

) + s (
𝑎
𝑏
𝑐

)       =>      (
𝑥
𝑦
𝑧

)  =   (
5
6
2

) + s (
−1
5

0.2
)  

It is observed that the direction vectors z coordinate is not 0, thus 

the line (here the motorway) is not horizontal.  

---------- 

It is observed, that the direction vectors are different, so the lines 

are skewed and will cross somewhere, where the shortest distance 

can be calculated from 

 dist.(l1,l2)  =  
ǀ𝐧 ·𝐏1𝐏2ǀ

ǀ𝐧ǀ
  

We call the railway overpass l1 and the motorway l2.  

P1 is the known point on l1:  (10, 10, 7)   

P2 is the known point on l2:  (5, 6, 2) 

Vector  P1P2  then is:  (
5 − 10
6 − 10
2 − 7

)  =  (
−5
−4
−5

) 

The common normal vector is:   

n  =  r1 × r2  =  (
2
3
0

) × (
−1
5

0.2
)  =   (

0,6
−0.4

13
) 

The numerator      │(
0,6

−0.4
13

) · (
−5
−4
−5

)│ =  ǀ-3 + 1.6 - 65ǀ  =  66.4 
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the denominator     ((0,6)2 + (-0.4)2 + 132)½  ≈  13.02   

combined dist.(l1,l2)  =  
66.4

13.02
  ≈  5.1 meters. 

 

2. 

The centre line for a motorway has (as in example 1) the vector 

function  

(
𝑥
𝑦
𝑧

)  =   (
5
6
2

) + s (
−1
5

0.2
) 

Relative to the same local coordinate system someone wishes to 

build a house with the coordinates  (301, 411, 9)  for the corner 

nearest the motorway. Let us calculate the distance between centre 

line and corner in meters: 

d  =  
ǀ𝐫 × 𝐏𝐨𝐏ǀ

ǀ𝐫ǀ 
  where 

numerator ǀ r × P0P ǀ  =  │ (
−1
5

0.2
) ×  (

301 − 5
411 − 6

9 − 2
) │  = 

│ (
−46
66.2

−1885
) │  =  ((-46)2 + 66.22 + (-1885)2)½  ≈  1887 

denominator ǀrǀ  =  ((-1)2 + 52 + 0.22)½  ≈  5.103 

Combined  d  =   
1887

5.103
  ≈  369.8 meters 

 

3. 

We will find the distance between two parallel planes 
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x - 5y - 2z + 1  =  0      and -2x + 10y +4z  =  0 

First we control that the planes are parallel, and find that their 

normal vectors are proportional (by a factor  -2). So, they are 

parallel. (Otherwise it would make no sense to continue). 

In the first plane we chose a point with  x = 0  and  y = 0  which 

we insert and get  z  =  
1

2
   

From the point (0, 0, 
1

2
  )  to the other plane  -2x + 10y + 4z  =  0  

the distance is 

dist.  =  
ǀ ax1+by1+ cz1+d ǀ

√𝑎2+ 𝑏2+𝑐2
 => here 

dist. =  
ǀ (−2)·0+10·0+ 4·0,5+0 ǀ

√(−2)2+ 102+42
  =  

ǀ 0+0+2+0 ǀ

√120
  =  

2

√120
  ≈  0.183 

 

4. 

Let us find the angle between the two planes in example 3. We 

know they are parallel, so the angle must be 0°. This time we 

control with the formula for the dot product 

cos v  =   
𝐧1·𝐧2

ǀ𝐧1ǀ · ǀ𝐧2ǀ
   => here 

numerator      (
1

−5
−2

)·(
−2
10
4

)  =  -2 + (-50) + (-8)  =  -60 

denominator             (12 + (-5)2 + (-2)2)½ · ((-2)2 + 102 + 42)½  =  60 

combined  cos v  =  
−60

60
  =  -1   =>          v  =  180° 
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Whether we get 0° or 180° depends on the direction of the normal 

vectors. Thus, an answer of 180° corresponds fine with parallel 

planes.   

 

5. 

A roof surface lies on a plane with the equation 

x + 0y - z  =  0   or z  =  x + 0y 

The centreline of a chimney has the equation 

(
𝑥
𝑦
𝑧

)  =   (
3
6
2

) + t (
0
0
4

) 

In which point will the centre line of the chimney intersect the 

roof surface? (i.e. where does the line intersect the plane?). 

What is the acute angle between chimney and roof? 

What is the roof angle relative to horizontal? 

---------- 

We need to include the y coordinate (even though it is 0) to show 

we are dealing with a plane. If we do not, one would reckon that 

we consider a line in 2D.  

0y means that the plane is not crooked relative to the y-axis. y 

determines where we are in the length of the roof, while x and z 

determine the slope of the roof.  

A plane is infinitely big, while the roof in the plane has a limited 

size. We will build a house 14 meters long and 12 meters wide. So 

we display a plot with x in the interval  [0;6]  and y in the interval  

[0;14]. z will become what the planes equation renders. We can 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       307 
 

solve the problem without a figure, but a plot is displayed in the 

diagram:  

 

Please note that the divisions on the axis are not equidistant. 

Answer: 

The intersection point is where the equations of both the line and 

the plane have the same x, y, z - values. Thus, two equations with 

two unknowns. 

We insert line into plane: 

x + 0y - z  =  0 => 

i.e.  3 + 0t for x 

and nothing for y 
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and 2 + 4t for z 

combined 3 - (2 + 4t)  =  0  

 1 - 4t  =  0   

t  =  
1

4
  

so, when the ”running” parameter t is 
1

4
 , we are at the intersection. 

This t is inserted in the line equation 

(
𝑥
𝑦
𝑧

)  =   (
3
6
2

) + (
1

4
)·(

0
0
4

) 

Which yields the intersection point  (x, y, z)  =  (3, 6, 3)  which 

also is shown in the figure with some helping lines. 

---------- 

The angle between chimney and roof: 

cos u  =   
𝐫·𝐧

ǀ𝐫ǀ · ǀ𝐧ǀ
   => here 

numerator  (
0
0
4

) · (
1
0

−1
)  =  - 4 

denominator (42)½ · (12 + (-1)2)½  =  4√2   

combined  cos u  =  
−4

4√2
       => u  =  135° 

Due to the direction of the normal vector, we found the obtuse 

angle. The acute angle between chimney and roof is  180° - 135°  

=  45°. 

The angle between roof and horizontal is   

vertical - 45°  =  90° - 45°  =  45° 
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The sphere 

 

   

                 

 

 

 

The arrow shows a radius from the centre C to a point P on the 

spherical shell.  

C has the coordinates (a, b, c)  and  P has the coordinates (x, y, z) 

in a 3D coordinate system. 

The distance between C and P is the radius, r. 

The distance between two points in 3D was earlier derived as 

ǀP1P2ǀ
2  =  (x2 - x1)

2 + (y2 - y1)
2 + (z2 - z1)

2   Pythagoras in 3D 

which here is 

r2  =  (x - a)2 + (y - b)2 + (z - c)2   the equation of the sphere 

 

Tangent plane 

The equation for a tangent plane in a point on the sphere is 

determined by forming a normal vector from the centre to the 

point and use it in the equation of the plane.  
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Example 1 

Sphere: 32  =  (x - 0)2 + (y - 1)2 + (z - 2)2   

 which has the centre in C(0,1,2) and radius  r = 3 

Find the equation of the tangent plane in point P(0,1,5)                  
= (x0, y0, z0) in the plane 

We form the normal vector of the plane           end minus start 

n = CP = (0 - 0 , 1 - 1 , 5 - 2 )  =  (0,0,3) 

inserted into the planes equation 

a(x - x0) + b(y - y0) + c(z - z0)  =  0  => 

0(x - 0) + 0(y - 1) + 3(z - 5)  =  0   

3z - 15  =  0     

z  =  5  Which is the equation of the tangent plane. 
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Part 5. Statistics 

Very unusually, statistics is imprecise mathematics. Back in the 

day, it was discussed if the subject should - or should not - 

become a field within mathematics. The imprecise argues against, 

but the use of figures and calculations argues pro. So, it was 

decided that statistics is a field within mathematics.  

Statistics is necessary when we handle big amounts of data, which 

in the real world will imply exceptions and shortcomings, making 

it impossible to be precise.   

Therefore, we need concepts like average value, mean value, 

dispersion, standard deviation and some tool to estimate the 

precision of our calculations. A good question remains to be: How 

many observations/information/data do we need to make an 

estimation at all?  

This we will discuss in a brief way, and we start by considering 

non-grouped observations.  
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Observations 

Non-grouped observations 

A candy bag contains 30 sweets. They weigh almost the same, but 

not quite. The information is overviewed from the table: 

Observation. 
Here weight per 

sweet in grams 

Number of 

observations 

Frequency, 

f 
Out of 1 

Frequency 
Out of 100, 

i.e. in % 

Cumulative 

frequency 
Frequencies 

summarized 

2.1 1 0.0333 3.3 0.0333 

2.2 5 0.167 16.7 0.2 

2.3 7 0.233 23.3 0.433 

2.4 7 0.233 23.3 0.666 

2.5 6 0.200 20.0 0.866 

2.6 4 0.133 13.3 1 

Total: 30 1 100 % 1 

 

Observations and number of observations are measured, while 

frequency and cumulative frequency are calculated. 

The manufacturer tries to achieve an average weight of 2.35 

grams per sweet. We also observe, that 2.35 is the average of the 

values from 2.1 to 2.6 grams: 

average  =  
2.1+2.2+2.3+2.4+2.5+2.6

6
  =  2.35 gram 

However, the sweets are not equally dispersed between heavier or 

lighter sweets. So, we have to be more precise and calculate the 

mean value. The mean value is the mean of all observations and 

calculated by saying:  observation multiplied by frequency, plus 

the next, etc. - all of it divided by the total number of sweets: 

mean value  =  
2.1·1+2.2·5+2.3·7+2.4·7+2.5·6+2.6·4

30
  =  2.38 grams 
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Or by saying:  observation times frequency plus the next, etc.: 

mean value  =  

2.1·0.333+2.2·0.167+2.3·0.233+2.4·0.233+2.5·0.2+2.6·0.133  = 

2.38 grams 

So, the consumer gets a little more for the money.  

---------- 

Quartiles, is the division of the number of data points into four 

parts, or quarters. The first quartile is equal to - or bigger than - 25 

% of the data, which may be read in the column “Cumulative 

frequency”. The second quartile (also called the median) is ≥ 50 % 

of the data. The third quartile is ≥ 75 % of the data, and finally, 

the fourth quartile comprises all data, 100 %, of the whole series 

of observation. Quartiles may also be called percentiles.  

A set of quartiles consists of the first, the second, and the third 

quartile. For our sweets it is:  [2.3 ; 2.4 ; 2.5].  

---------- 

We get a good overview by making a box chart: 

smallest observation  -  1.quartile  -  2.quartile  -  3.quartile  -  biggest observation 

Here:              2.1        -       2.3      -       2.4     -      2.5     -       2.6 

and the box chart: 

 

 

2.1 2.2 2.3 2.4 2.5 2.6 
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Or a sticks chart: 

 

 

Grouped observations 

In a ball bearing production are produced spheres with a diameter 

of 5.00 millimeters. Some are a little bigger, and some are a little 

smaller. This is compensated for by using small spheres with thick 

rings, and the bigger spheres are used with the thinner rings. This 

way nothing is wasted, and the ball bearings will have the 

dimension required. We gather the spheres in groups as follows: 

Observation. 
Here diameter 

Number of 

observations 

Frequency, 

f 
Out of 1 

Frequency 
Out of 100  

i.e. in % 

Cumulative 

frequency 
Frequencies 

summarized 

[4.80 ; 4.85] 1 0.01 1 0.01 

]4.85 ; 4.90] 5 0.05 5 0.06 

]4.90 ; 4.95] 21 0.21 21 0.27 

]4.95 ; 5.00] 33 0.33 33 0.6 

]5.00 ; 5.05] 31 0.31 31 0.91 

]5.05 ; 5.10] 9 0.09 9 1 

Total 100  1 100 % 1 

Sticks chart 

Number 

Observation 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       315 
 

When calculating the mean value, we use the diameter in the 

middle of the interval, i.e. 4.825 mm, 4.875 mm, etc. Thus, we 

calculate somewhat imprecise, but that is accepted: 

mean value  = 

4.825·0.01+4.875·0.05+4.925·0.21+4.975·0.33+5.025·0.31+5.075·0.09  = 

4.983 mm. 

The production plant is working well though it may be fine 

adjusted.  

---------- 

It would be too coarse to read the set of quartiles from the table.    

It is possible to sketch a box chart or a sticks chart, but it is better 

to sketch a sum curve in a diagram: 

  

On the first axis are the observations from the table. 

On the second axis are the cumulative frequencies from the table.  

Now we can have a finer reading of the set of quartiles from the 

sum curve: We go from 25%, 50%, 75% horizontally to the curve 

Frequency in % 

Observation 

Sum curve 

Third quatile 

Median, 2.qua. 

First quatile 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       316 
 

and vertically to the first axis to read the set of quartiles:  [1.qua. ; 

2.qua. ; 3.qua.]  =  [4.94 ; 4.976 ; 5.01] 

Since it is a reading, it will be inaccurate (with some uncertainty). 

The more data we have, and the more intervals we define - the 

finer and smoother the sum curve will be.  

---------- 

Finally, we will show the histogram, which is a special column 

diagram displaying the history of the measurements, such that the 

area of each column corresponds with the frequency of the 

interval.  

Here we display the production of ball bearings with data from the 

table: 

 

 

The groups are on the first axis. On the second axis is the number 

we multiply by the width of the observation to render the 

frequency in per cent, %. Here the width of all the groups is 0.05:  

0

100

200

300

400

500

600

700

1

Kugleleje kugler
Histogram

4,80 ; 4,85 4,85 ; 4,90 4,90 ; 4,95 4,95 ; 5,00 5,00 ; 5,05 5,05 ; 5,10

Ball bearing spheres 
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(4.85 - 4.80) · 20  = 1 % 0.05 · 100  =  5 % 0.05 · 420  =  21 % 

0.05 · 660  =  33 % 0.05 · 620  =  31 % 0.05 · 180  =  9 % 

We find that the total is 100%, just as it should be. 

Thus, the second axis of the diagram does not show something 

directly useful. It is the area, that shows the frequency. In a way, 

the histogram is the precursor of the normal distribution curve (see 

below) which also has the area 1 or 100% under the curve. 

Otherwise, the advantage of this diagram is mainly for 

measurements with different widths.   

Altogether, it is fair to say that sticks charts and sum curves often 

gives the best overview.  

 

Normal distribution, variance and standard deviation 

Many observations are normal distributed, meaning that for 

instance the diameters of the spheres will disperse symmetrically 

around the mean value of 5 mm. This was not exactly so in our 

case, but if we were observing 1000 or 10 000 spheres, they would 

probably be normal distributed. A normal distribution curve may 

look like this: 

 

 

 

   1 sd.   1 sd. 

 

  -3     -2    -1   mean  1     2      3 

Area:           0,1%     2,3%    13,6%   34,1%  34,1%    13,6%    2,3% 0,1% 
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If we sketch a sticks diagram or a histogram from many normal 

distributed measurements, we will have a bell like shaped curve as 

shown. 

The figure may be higher or lower depending on the division of 

the scale. The point is that all observations are under the curve, so 

that the area under the curve includes all (100 %) observations of 

for instance the spheres of our ball bearings. Thus, the area under 

the curve is 1 or 100 %. 

There are shown three lines on either side of the mean value. The 

distance between two lines is called the standard deviation, sd, (or 

dispersion). There are three standard deviations to the left, and three 

standard deviations to the right. 

the area between line -1 and 1 include 68.2 % of the 

measurements  

the area between line -2 and 2 include 95.4 % of the 

measurements 

the area between line -3 and 3 include 98.8 % of the 

measurements 

The last two times 0,1 % are further away from the mean value, 

where the normal distribution curve approaches the first axis 

asymptotically.  

In science we usually present data this way: 

mean value  ±  standard deviation  

Thus 68.2 % of the measured data lies within ± the standard 

deviation (i.e. between line -1 and 1). Then we know what the 

whole distribution curve looks like.  

---------- 
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Yet how do we calculate the standard deviation? 

First, it should be decided what should be called the standard 

deviation.   

The thinking was to consider how far an observation is from the 

mean value, and then magnify the distance by squaring, and at the 

same time having a positive number, whether we are below or 

above the mean value:  

(obs. -  mean)2   

and multiply by the significance, i.e. the frequency, for each 

observation   

f · (obs. -  mean)2    

and summarize for all the observations 

Σ f · (obs. -  mean)2  

Σ means ”the sum of”. A full mathematical expression  

∑ 𝑓𝑖 · (𝑥𝑖 − μ)2𝑛

𝑖=1
   

Where the mean value is called μ (the Greek letter ”my”), the 

observation is called 𝑥𝑖 , i (for integer) is the number of the 

observation from 1 (start) to n (end).  

Thus, we define the variation as 

Var.  =  ∑ 𝑓𝑖 · (𝑥𝑖 − μ)2𝑛

𝑖=1
 

which expresses how far away we are from the mean value.  

Only, it turned out to be a little too far away, so we continue by 

taking the square root to get the standard deviation 

standard deviation  =  √𝑉𝑎𝑟. 
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The standard deviation is often called σ (a Greek sigma) 

σ  =  √𝑉𝑎𝑟. 

Thus, we can now calculate the standard deviation from the 

variance.  

Scientists have agreed on presenting data as 

mean value  ±  standard deviation   μ  ±  σ 

 

Example 1 

The mean value for the spheres of the ball bearing was previously 

calculated as 

μ  =  4.983 mm. 

Even though we do not have so much data, and even though the 

distribution is uneven with more spheres bigger than mean and 

fewer smaller than mean, we assume, that if we had much more 

data, we would have a normal distribution. Subject to this 

condition the standard deviation may be calculated as  

Var.  =  ∑ 𝑓𝑖 · (𝑥𝑖 − μ)2𝑛

𝑖=1
   => 

Var.  =  0.01·(4.825 - 4.983)2 + 0.05·(4.875 - 4.983)2 + 0.21·(4.925 - 4.983)2 +  

                   0.33·(4.975 - 4.983)2 + 0,31·(5.025 - 4.983)2 + 0.09·(5.075 - 4.983)2  =   

              0.00282    => 

σ  =  √𝑉𝑎𝑟.  =  √0.00282  =  0.0531 mm. 

Combined the mean value and the standard deviation are: 

μ  ±  σ => 4.983 ± 0.053 mm. 

---------- 
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Not all measurement series are normal distributed. Then we will 

have a skewed distribution curve. A further treatment of this falls 

outside the scope of this book.  

 

Chi to the power of two - testing 

We may form a quotient to evaluate if some observations 

(intervals or whole series) are close to - or further away from - 

what was expected: 

χ2  =  Σ  
(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)

2

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
 

we use the ancient Greek letter  χ  =  Chi  and the quotient is 

called a chi to the power of two - test. In the numerator, we 

magnify the deviation by squaring, and at the same time get a 

positive number no matter if we are above or below the expected, 

- same way of thinking as for the variance.  

If the observed equals the expected, the quotient is zero, which is 

perfect. A bigger distance between observed and expected renders 

a bigger quotient.  
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Regression 

In mathematics, we use the concept: Regression, to organize 

measurements in a best-fit function.  

We have been to the laboratory to measure currents (I) and 

voltages (U) in a circuit. We measured this: 

 

We know that the measurements should follow Ohm´s law 

U  =  R · I  where R is the resistance in Ohms. 

This corresponds with the equation for a straight line through 

Origo (0,0): 

y  =  a · x   

Now the second axis is U, the first axis is I, and the slope is R. 

Thus, Ohm’s law displays a straight line in a I,U diagram, and 

thus we know that our measurements should form a straight line. 

However, there are uncertainties in our measurements, so which 

straight line is the best fit? 

We may right away place a ruler to see, that this line is nearly 

perfect: 

Voltage 

in Volts 

Current in Ampéres 
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---------- 

Things become much more complicated if we want to determine 

the best-fit line by calculation. We use the “method of least 

squares” in which we guess a line, find the vertical distance 

between a point of measurement and the line, and square it (same 

way of thinking as for the variance). We do so for all measured points 

and summarize the squares. Then we guess other lines, calculate 

new squares, and choose the line with the least square. This line is 

our calculated regression line - or ”best-fit curve”.  

Clearly, this is a major calculation work suitable for advanced 

CAS. 

Regardless of using a calculator or a calculation program, the 

principle is the same. In our example:  

1. We enter the measured data for the first axis and call them I 

2. We enter the measured data for the second axis and call 

them U 

Voltage in 

Volts 

Current in Amperes 

Estimated regression line 
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3. We ask for linear regression using  y = ax + b  or we write a 

key line such as:  LinReg(I,U) 

4. Enter 

Then, we will have a diagram with a regression line and its 

equation.  

Often we also get a reliability factor - often called r or R (maybe 

squared: r2 or R2) - informing how reliable the program finds the 

calculation. 1 is very fine, 0,99 is fine; 0,95 is not as fine, etc.  

---------- 

The principle is the same for other functions: 

For example, Time on the first axis and Number on the second 

axis for the regression of an exponential function  y = b·ax  with 

the key line:  ExpReg(Time, Number) 

Or Time on the first axis and Pounds on the second axis for the 

regression of a power function  y = b·xa  with the key line:  

PowReg(Time, Pounds).  
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Probability and combinations 

Statistics is when we process a large number of data. One can 

argue that we look to the past. 

Probability is when we seek a probable answer to something 

happening in the future.  

Simple probabilities can be calculated precisely, for instance the 

probability of observing six when we roll a dice. No uncertainty.  

Complicated probabilities based on many data, all of which holds 

their own uncertainty, will lead to an uncertain probability. For 

example a weather forecast on having sunshine tomorrow at 2 

a.m. In such a case we may calculate/estimate a probability 

expressed by a number between 0 and 1 or between 0 and 100% 

and an uncertainty. For instance a probability  81% ± 5%  of 

having sunshine tomorrow at 2 a.m. Usually the public will only 

be informed about the 81%. 

Complicated probability calculus is a large area of expertise for 

specialists, such as meteorologists and insurance professionals.  

 

Here we will deal with simple and precise probability calculation, 

which nevertheless quickly becomes quite difficult. We will see 

some formulas for Permutation and Combination that are so 

difficult to prove that we will instead show their correctness by 

examples - and this is done in the chapter: "Rarely used proofs 

and calculations". 

It should also be mentioned that there are many technical terms in 

this subject. 

---------- 

We will use new numbers such as  
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5!  which stands for 5 factorial, and which means  5·4·3·2·1  and 

which, by the way, gives 120. 

7!  which stands for 7 factorial, and which means  7·6·5·4·3·2·1  

and which, by the way, gives 5040. 

And a little specialty:  0! = 1  which we have to define in order to 

avoid having zero erasing everything in the formulas we are going 

to use. 

 

Theory 

The probability is a number between 0 and 1 (or between 0 and 

100%) calculated as 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
  

So we need to know both the numerator and the denominator in 

order to calculate the probability.  

First we find the denominator number of possible outcomes which 

we determine according to the following six cases where  n  is the 

number of elements/objects in the pool/population and  r  is the 

number considered: 

1. ”Both, and” with the technical term Multiplication rule: 

 number of possibilities = one possibility times the other 

2. ”Either, or” with the technical term Addition rule:   

 number of possibilities = one possibility plus the other 

3. The formula for any order, without repetition (Technical term: 

Permutation ≈ reversal of order) 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝑃 =  
𝑛!

(𝑛−𝑟)!
 

 Will be shown in chapter “Rarely used proofs and calculations”  
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4. The formula for no order, without repetition (technical term: 

Combination)  

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝐾 =  
𝑛!

𝑟!·(𝑛−𝑟)!
  

 Will be shown in chapter “Rarely used proofs and calculations” 

5. Any order, with repetition agrees with point 1: ”Both and”, 

therefore:    

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝑛𝑟 

6. The formula for no order, with repetition

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 =
(𝑛−1+𝑟)!

𝑟!·(𝑛−1)!
        will not be shown 

This formula is also - and especially - used in connection 

with random sampling, which we will come back to.  

 

These six cases/formulas show how we combine the possibilities – 

and the technical term is Combination.  

In the following examples we first calculate the number of 

possible outcomes (the denominator) – then the probability (the 

whole fraction): 

 

Examples 

1. 

How many combinations are there if we roll a dice two times? 

The case is ”Both, and” which renders:   6 · 6  =  36 possibilities 

---------- 

What is the possibility of having two sixes in a row? 

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑖𝑟𝑠𝑡 𝑟𝑜𝑙𝑙 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
=

1

6
  

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑒𝑐𝑜𝑛𝑑 𝑟𝑜𝑙𝑙 =  
1

6
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The case is ”Both, and” which renders:     
1

6
·

1

6
=  

1

36
≈ 2.78% 

 

2. 

How many "eyes" are there on two dices? 

Each dice has six sides with each 1, 2, 3, 4, 5, 6 ”eyes”. 

The case is ”Either, or” which renders:  6 + 6  =  12 possibilities 

---------- 

What is the possibility of having one six in two rolls with one 

dice? 

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑖𝑟𝑠𝑡 𝑟𝑜𝑙𝑙 =  
1

6
  

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑒𝑐𝑜𝑛𝑑 𝑟𝑜𝑙𝑙 =  
1

6
  

The case is  ”Either, or” which renders:     
1

6
+

1

6
=  

2

6
=  

1

3
≈ 33.3% 

 

3. 

A foreman and deputy foreman and alternate must be elected in a 

board with 7 members. The one first elected becomes foreman, the 

next becomes deputy foreman, and the third becomes alternate. In 

how many ways can the 3 people be elected? 

 

Here the order is crucial, and the first elected will not be put back in the pool. 

Therefore the case is any order, without repetition. The formula is: 

𝑃 =  
𝑛!

(𝑛−𝑟)!
  

Where P is the number of possibilities, n is the number of members (here 7),  

and r is the number of selected people (here 3). 
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The values are inserted: 

𝑃 =  
𝑛!

(𝑛−𝑟)!
=

7!

(7−3)!
=

7·6·5·4·3·2·1

4·3·2·1
=

7·6·5

1
= 210 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠  

---------- 

What is the probability of Liz becoming foreman, Peter becoming 

deputy foreman, and Ann becoming alternate?  

Liz and Peter and Ann is one possibility (the favorable outcome), therefore: 

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
 =  

1

210
≈ 0.476% 

 

4. 

A foreman and deputy foreman and alternate must be elected in a 

board with 7 members. The election will show who of the 3 

people are having the 3 positions – regardless of which position. 

The decision amongst the 3 is postponed until later. How many 

possibilities are there for selection of the 3 people? 

Here the order does not matter, and the one selected will not be put back into 

the pool, therefore: no order, without repetition. The formula is: 

𝐾 =  
𝑛!

𝑟!·(𝑛−𝑟)!
  

Where K is the number of possibilities, n is the number of members  

(here 7), and r is the number selected (here 3).  The values are inserted: 

 𝐾 =  
𝑛!

𝑟!(𝑛−𝑟)!
=

7!

3!(7−3)!
=

7·6·5·4·3·2·1

1·2·3·1·2·3·4
=

7·6·5

1·2·3
= 35 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

---------- 

What is the possibility of the election of Liz and Peter and Ann? 

Liz/Peter/Ann or other orders amongst them is one possibility, therefore: 
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 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
=  

1

35
≈ 2.86% 

 

5. 

A code is formed from three small letters from an alphabet with 

25 letters – and three digits. How many possibilities are there? 

The case is any order, with repetition  => ”Both and” =>  multiplication:  

25·25·25·10·10·10  =  253·103  =  15 625 000 possibilities 

---------- 

What is the probability of having the code abc123? 

abc123  is the only favorable outcome, therefore: 

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
=  

1

15 625 000
 

---------- 

The probability of having either the code abc123 or the code 

bcd123 is: 

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
=  

1+1

15 625 000
=

2

15 625 000
 

 

6. 

A driving school must have four new cars. The dealer has seven 

models that can be used. How many possibilities are there to 

choose cars if the same combination has may be repeated? 

The case is no order, with repetition: 

 
(𝑛−1+𝑟)!

𝑟!·(𝑛−1)!
=

(7−1+4)!

4!·(7−1)!
=

10!

4!·6!
= 210 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

---------- 
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Three models are from last year, which the seller hopes he can sell 

together with one of the new cars. What is the probability of that? 

  

We name the cars A1, A2, A3, B, C, D, E. 

A1, A2, A3, B can be combined in 4 ways. 

A1, A2, A3, C can be combined in 4 ways. 

A1, A2, A3, D can be combined in 4 ways. 

A1, A2, A3, can be combined in 4 ways. 

The case for the numerators number of favorable outcomes is ”Either, or” 

=>  addition. Therefore: 

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
=  

4+4+4+4

210
=

16

210
≈ 7.6%  

---------- 

And now some more advanced combinations: 

 

7. 

A country's three states come together to hold a football 

tournament. 10 matches are to be held, distributed so that the 

largest state A must hold 5 matches, the second state B must hold 

3 matches, and state C gets 2 matches - but which ones? 

5 A notes, 3 B notes and 2 C notes are put in a jar. A total of 10 

notes. 

Three notes are drawn for the first three matches. What is the 

probability that they are all A? 

 

The order is irrelevant so the situation is no order, without repetition. 

We must calculate        𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
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The numerator shows how many possibilities there are of having 3 out of  

5 A´s.    => 

Numerator         𝐾 =  
𝑛!

𝑟!·(𝑛−𝑟)!
=

5!

3!·(5−3)!
=  

120

6·2
= 10 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 

Taken from the whole pool/population which is the denominator: 

Denominator     𝐾 =  
𝑛!

𝑟!·(𝑛−𝑟)!
=

10!

3!·(10−3)!
=  

7!·8·9·10

6·7!
= 120 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

Combined     𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
=

10

120
=  

1

12
≈ 8.33% 

 

8. 

The three notes showed A, B, B and are not put back. Two new 

notes are drawn. What is the possibility of  B, C ? 

The order is irrelevant so the case is no order, without repetition. 

Left are now A, A, A, A, B, C, C. i.e. 7.   => 

Denominator           𝐾 =  
𝑛!

𝑟!·(𝑛−𝑟)!
=

7!

2!·(7−2)!
=  

5!·6·7

2·5!
= 21 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

Numerator for B     𝐾𝐵 =  
1!

1!·(1−1)!
=

1

1·1
=  1 

Numerator for C     𝐾𝐶 =  
2!

1!·(2−1)!
=

2

1·1
=  2 

KB  and  KC  must be combined as ”Both, and” =>  multiplication  => 

Combined         𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
=

𝐾𝐵ˑ𝐾𝐶

𝐾
=

1ˑ2

21
=

2

21
≈ 9.5% 
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Binomial distribution, random sample, and confidence 

interval 

Binomial distribution, introduction 

In probability theory, a random variable is named a stochastic 

variable. The name comes from ancient Greek. 

A binomial experiment with a random variable has three 

properties: 

1. The outcome is a success or a failure (hence the name 

binomial). 

2. Experiment 1 has no influence on Experiment 2, which has 

no influence on Experiment 3, etc. – all experiments are 

independent. 

3. All trials have the same probability of success. 

Good examples are hitting flats/crowns with a coin - or rolling 

with a dice. 

Rolling a dice 

When rolling a dice there is  
1

6
 (≈ 0.1667)  probability of having 1, 

1

6
  

probability of having 2, etc., in an infinite number of rolls.  

With an finite number of rolls we can sketch a diagram with r 

(number) on the first axis, and P (probability) on the second axis. 

Then we obtain a binomial distribution, which equals the normal 

distribution in Statistics with mean value and standard deviation: 

 

 

   1 sd.   1 sd. 

 

  -3     -2    -1  mean  1     2      3 

Normal 

Binomial

l 

Area under the curve 

= whole probability    

=  1 = 100% 

Here: mean = 0.1667 
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Area:           <0,1%     2,3%    13,6%   34,1%  34,1%    13,6%    2,3%            <0,1% 

We call it the normal distribution curve, when it describes the 

observation, - for instance the diameter of a sphere.  

We call it the binomial distribution curve, when it describes the 

probability of the number of successes.  

A detail: A normal distribution curve is smooth (continuous) because the measurement 

quantity (for example a sphere diameter) can be any value – with a smooth transition. A 

binomial distribution curve will be discontinuous because the number of success/failure is a 

number without a smooth transition to the next number of success/failure. One also uses the 

technical expressions that the normal distribution curve is continuous, while the binomial 

distribution curve is discrete (= separated). However, if the binomial distribution curve has a 

lot of points (possibly shown as bars) it will in practice be smooth. 

 

If we roll only 24 times, it is not for certain, that we will see 4 of 

each (4 times six, four times five, etc.). 

One may call the 24 rolls a random sample, which makes it 

obvious, that we need a tool for the assessment of the random 

sample.  

First, however, we must consider more theory and formulas for 

the binomial distribution: 

 

The binomial distribution 

Thus, a binomial distribution curve is ”similar” to the normal 

distribution curve. And the whole area under the curve shows a 

probability of 1 or 100%. 

However, since we now use the curve to describe the probability, 

we use other data/information than within statistics, wherefore we 

need to change the calculation method of finding the mean value 

and the standard deviation, as well as finding a formula (the 

function) for the binomial distribution curve.  
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The function must describe a no order sequence of succes and 

failure. The three sizes must be combined ”Both, and” =>  

multiplication: 

Binomial distribution (P)  =  no order · succes · failure 

Here P stands for probability – and not for Permutation as before. 

The combination for no order is 𝐾 =  
𝑛!

𝑟!·(𝑛−𝑟)!
  

Of the whole population/pool with the number  n  there are  r  with a 

probability of succes  p  (a number between 0 and 1). More successes must be 

multiplied i.e.  pr  

Those which are not successes must be failures with the number  (1-p). More 

failures must be multiplied i.e.  (1-p)n-r  

Combined the binomial function is: 

 𝑃 =  
𝑛!

𝑟!·(𝑛−𝑟)!
· 𝑝𝑟 · (1 − 𝑝)𝑛−𝑟 

---------- 

The most probable value is the mean value which is determined as 

mean value  =  number  times  probability => 

 𝜇 =  𝑛 · 𝑝 

---------- 

The standard deviation for the size x is known from Statistics as 

σ(x)  =  √∑ 𝑓𝑖 · (𝑥𝑖 − μ)2𝑛

𝑖=1
 

which by a long and difficult conversion becomes: 

 

σ(x)  =  √𝑛 · 𝑝 · (1 − 𝑝)    or just σ since the variable is not always called x 
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we will not show the conversion 

i.e. now with sizes for binomial probability calculation. 

Which, by the way, gives the variance      𝑉𝑎𝑟 = 𝑛 · 𝑝 · (1 − 𝑝) 

 

Rolling a dice 

We roll a dice  n =100  times. Each roll, for instance having a 6, 

has a probability of  p = 
1

6
 ≈ 0.1667 

Then the binomial distribution (number-probability diagram =     

r-P diagram) looks this way: 
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Area ca.;   <0.1%       2.3%   13.6%   34.1%    34.1%    13.6%     2.3%        <0.1%       = 100% 

the area between line  - 1σ and + 1σ is 68,2 % of the measurements.  

the areal between line - 2σ and + 2σ  is 95,4 % of the measurements.  

the areal between line - 3σ and + 3σ  is almost 100 % of the measurements. 

The mean value (= the most probable number of successes) is: 

 𝑚𝑒𝑎𝑛 = 𝜇 =  𝑛 · 𝑝 = 100 · 0.1667 = 16.67 rolls with six eyes 

The standard deviation is:  

σ = √𝑛 · 𝑝 · (1 − 𝑝) = √100 · 0.1667 · (1 − 0.1667) = 3.727 

 𝑃 =  
100!

𝑟!·(100−𝑟)!
· 0.1667𝑟 · (1 − 0.1667)100−𝑟 

 

P 

r = rolls of six out of 100 

mean 
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Both values may be read in the diagram. 

---------- 

If we instead roll the dice 48 times, we expect to have: 

 𝜇 =  𝑛 · 𝑝 = 48 · 0.1667 = 8 rolls with 6 eyes 

but the standard deviation is big: 

σ = √𝑛 · 𝑝 · (1 − 𝑝) = √48 · 0.1667 · (1 − 0.1667) = 2.58 

---------- 

We see that the standard deviation is relatively smaller the more 

rolls we do. In other words, the more times we roll the dice, the 

more certain we become to have  
1

6
  sixes. 

 

Random sample and confidence interval for a binomial 

distribution 

Rolling a dice is a simple case, since we just have to consider 6 

possibilities. We know that there always is  
1

6
  probability of 

having six in the next roll. 

Otherwise uncertain is it with a big amount of data. Then we will 

have to take random samples as representative as possible, 

followed by an estimation/calculation of the confidence in this 

random sample. We do so by calculating the confidence interval, 

which is a ”statistic uncertainty of the probability”: 

---------- 

For the random sample we can calculate the mean value and the 

standard deviation, so that we can sketch the binomial curve of the 

random sample.  
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As mentioned the mean value is 𝜇 =  𝑛 · 𝑝          𝑝 =
𝜇

𝑛
  

We have seen the standard deviation of all the sizes x:  

σ(x)  =  √𝑛 · 𝑝 · (1 − 𝑝) 

Now we see it as the standard deviation of a single size => 

σ(
𝑥

𝑛
) =

√𝑛·𝑝·(1−𝑝)

𝑛
= √

𝑛·𝑝·(1−𝑝)

𝑛2
= √

𝑝·(1−𝑝)

𝑛
  

and if we choose the mean value as the single size, we have 

 
𝑥

𝑛
=

𝜇

𝑛
= 𝑝     => 

σ(p) = √
𝑝·(1−𝑝)

𝑛
 

which is the standard deviation  σ  as a function of the point-

probability  p  and the number of all the sizes n 

In a random sample we usually choose the mean value as the size 

in focus, which for the random sample is called  𝜇*  or the point-

estimate  p* (some formula tables call it p with a ”hat”) 

The confidence interval is often chosen to be from  -2  to  +2  (see 

the constant) spreads, i.e.  95,4% - often rounded as 95%     => 

 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = [ 𝑝∗ − 2√
𝑝∗·(1−𝑝∗)

𝑛
  ;   𝑝∗ + 2√

𝑝∗·(1−𝑝∗)

𝑛
 ] 

The confidence interval here shows, that there is a  95,4% 

probability, that the actual mean value is found within the interval. 

 

One may also choose another confidence interval, for instance  68,2%  within  ± 1σ 

 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = [ 𝑝∗ − √
𝑝∗·(1−𝑝∗)

𝑛
  ;    𝑝∗ + √

𝑝∗·(1−𝑝∗)

𝑛
  ]          Note the constant 1 
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Example 1 

Before an election 1023 people  are asked if they will vote ”yes” 

or ”no”. 418 say “yes”, 501 say “no” and 104 say “don´t know”. 

What is the probability of all voters to vote ”yes”? 

The case is a binomial distributed random sample. And we choose to 

calculate the ca. 95% confidence interval: 

 [ 𝑝∗ − 2√
𝑝∗·(1−𝑝∗)

𝑛
  ;    𝑝∗ + 2√

𝑝∗·(1−𝑝∗)

𝑛
  ] 

Here is  n = 1023  and the point-estimate  p* =  
418

1023
≈ 0.409 => 

 [ 0.409 − 2√
0.409·(1−0.409)

1023
  ;    0.409 + 2√

0.409·(1−0.409)

1023
  ] = [0.378 ; 0.44] 

Thus there is a  95%  probability that between  37.8%  and  44%  of all the 

voters will vote “yes”. However, please note that the group ”don´t know” is 

big, so that the final resolve may change significantly. 

 

Example 2 

A brewery will test if people like a new soft drink. They ask an 

analysis institute for an investigation with a high confidence. 

The institute suggests to ask ca. 500 people and then calculate the  

99% confidence. The brewery approves. 

In practice  494  people are asked if they like the soft drink, ”yes” 

or ”no”? 77 say ”yes”. 

The case is a binomial distributed random sample. And we calculate the ca. 

99% confidence interval: 

[ 𝑝∗ − 3√
𝑝∗ · (1 − 𝑝∗)

𝑛
  ;    𝑝∗ + 3√

𝑝∗ · (1 − 𝑝∗)

𝑛
  ] 
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Here is  n = 494  and the point-estimate  p* =  
77

494
≈ 0.156 => 

 [ 0.156 − 3√
0.156·(1−0.156)

494
  ;   0.156 + 3√

0.156·(1−0.156)

494
  ] = [0.107 ; 0.205] 

Thus there is a  99%  probability that between  10.7%  and  20.5%  of all 

people may like the soft drink. 

A further investigation could be to ask how many would possibly buy the soft drink - and 

how often. 

---------- 

Predictions in the form of probability calculations and confidence 

intervals are often correct – but not always. A particularly 

sensitive point is to take the "right", representative sample. 

 

Notations and technical terms 

As previously mentioned there are many technical terms and 

various notations within probability calculation. It is probably due 

to different approaches in various professions. Here are the most 

common ones: 

n  usually stands for the number in the whole 

population/pool/quantity. 

r  usually stands for a chosen number in a 

population/pool/quantity. 

P  usually stands for Permutation – but may also stand for the 

Probability function – or just probability. 

p  usually stands for the probability parameter which is a number 

between 0 and 1, where  p  is the probability of success. 

K  usually stands for combination and has the formula  
𝑛!

𝑟!·(𝑛−𝑟)!
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K  with the same formula   
𝑛!

𝑟!·(𝑛−𝑟)!
   is also used in formulas for 

the binomial distribution. Then we may write  K(n, r)  meaning  K  

used in a binomial distribution with the overall number  n  and the 

chosen number  r. Or we may write  (𝑛
𝑟
)  which here is not a 

vector. 

i.e.   K(n, r) = (𝑛
𝑟
) =

𝑛!

𝑟!·(𝑛−𝑟)!
    

x  usually stands for a variable. 

X  usually stands for a stochastic variable (= binomial variable). 

x = xmid  usually stands for the mean value of  x 

𝜇  usually stands for the mean value of something, which then 

must be explained. Often, it is the same as  x  or  xmid   

If something is binomial distributed, it may be written  bin(n, p)  

or just  b(n, p)  which means:  binomial distribution with the 

number  n  and the probability parameter  p  -  and here it is not 

coordinates of a point. 

σ  usually stands for the standard deviation. 

*  or       (star or hat) are often used for sizes in a random sample, 

for instance  𝜇*  and  σ*  and  p* 

p*  is called the probability parameter of the random sample - or 

the central estimator of  p 
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Numbers, and brief on set theory 

The grouping of numbers was following the historic development 

of the four types of arithmetic operations:  

The natural numbers are whole positive numbers - those we count: 1, 2, 3, 

4,… 

The whole numbers are negative, zero, and positive:  …-2, -1, 0, 1, 2, 3,… 

The rational numbers are fractions of whole numbers (except 0 in the 

denominator). For instance  
−4

3
  and  

63

17
   

The irrational numbers cannot be written as fractions of whole numbers but 

as decimal numbers that never ends. For instance     𝜋 = 3,14…. 

Today these four groups are gathered as the real numbers, R. 

From here, there is a sharp border to numbers that are not real, 

numbers we must imagine, the imaginary numbers. The imaginary 

numbers have been described in chapter: “Imaginary numbers, 

briefly”. Here we repeat: 

√−64  =  √(−1) · 64  =  √(−1)  ·   √64    that is quite ok 

√(−1)  we name  I, that is also allowed, and then we have   

I · √64  =  I · 8   

So  √−64  =  I · 8   

which enables us to continue as if nothing has happened; only 

now, we are in the world of imaginary numbers. Yet, the 

calculation rule:  √𝑎 · √𝑎  =  √𝑎 · 𝑎   does not apply for imaginary 

numbers. 

The combination of real numbers and imaginary numbers is called 

complex numbers. 
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Complex numbers 

The combination of real numbers and imaginary numbers is called 

complex numbers. 

A brief introduction: 

Earlier we saw that coordinates may be shown either in the usual 

way (Cartesian coordinates) or as polar coordinates, and we repeat 

a former displayed diagram: 

 

Furthermore, we saw that the coordinates of a point may be shown 

as a position vector. 

Now we will consider the coordinates of a point combined with 

complex numbers. It looks the same.  

---------- 

We may use the complex numbers as a mathematical tool and 

display them in a coordinate system with the real numbers on the 

first axis, and the imaginary numbers on the second axis: 

P(r,Ɵ) Polar   

P(x,y) Cartesian 

r distance 

Ɵ angle 
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The distance from Origo is now called modulus and the angle 

from the +first axis is called the argument. Thus P´s position is 

modulus and argument  =  ǀOPǀ and arg(OP) 

The magnitude we want to describe here (shown as the line 

segment OP) thus consists of a real part and an imaginary part, 

and just like for polar coordinates we describe length and angle, 

only now called modulus and argument, to show that we are 

considering complex numbers.   

Overall we now have several ways to show coordinates. From 

earlier we have: 

 Ordinary Cartesian coordinates  P(x,y) 

 Position vector coordinates   OP = (𝑥
𝑦

) = (ǀ𝑂𝑃ǀ·cos Ɵ
ǀ𝑂𝑃ǀ·sin Ɵ

)   

or   OP = ǀOPǀ·(cos ϴ·i + sin ϴ·j) 

or short   OP = xi + yj   
(here it is a little distracting, that the base vector in the x-direction is called i, 

while the imaginary base number on the y-axis is called I (some use i)). 
 

Imaginary numbers 

Real numbers 

Modulus = distance 

Argument = angle 
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 Polar coordinates  P(r,Ɵ)  distance and angle 

And the new complex polar coordinates: 

 (mod, arg)    or    mod    arg       distance and angle 

 

and an example: 

(mod, arg)  = (5, 
𝜋

4
)   or just              5     

𝜋

4
  =  5    45° 

The latter is probably the most common.  

  

If the angle is  90° = 
𝜋

2
  we have a purely imaginary number. 

---------- 

It is the most common, and the easiest, to use the vector tool for 

calculation of complex numbers (also called the rectangular form). 

Here are some examples using the four basic arithmetic: 

 

Calculation with complex numbers in the rectangular form (as 

vectors) 

Example 1 

We have two complex sizes written as 

complex number  =  real part + imaginary part 

here: a =  3 + 4I  b  =  -2 + 5I 

 

Sum 

a + b  =  (3 + 4I) + (-2 + 5I)   

a + b  =  1 + 9·I separately real and separately imaginary 
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Difference 

a - b  =  (3 + 4I) - (-2 + 5I)  

a - b  =  5 - I 

 

Product 

a · b  =  (3 + 4I) · (-2 + 5I)  

a · b  =  -6 + 15I - 8I + 20I2  

a · b  =  20I2 + 7I - 6  => and since  I = √(−1)  

a · b  =  -20 + 7I - 6    

a · b  =  -26 + 7·I 

 

Division 

 
𝑎

b
  =  

3 + 4I

−2 + 5I
     

𝑎

b
  =  

(3 + 4I)(−2−5I)

(−2 + 5I)(−2−5I)
       

𝑎

b
  =  

−6−15𝐼−8𝐼−20𝐼2

4+10I−10I−25𝐼2
       

𝑎

b
  =  

−6−23𝐼+20

4+25
      

𝑎

b
  =  

14−23𝐼

29
    

𝑎

b
  ≈  0,483 - 0,793·I  

In other words, completely ordinary calculation rules. 



© Tom Pedersen WorldMathBook cvr.44731703. Denmark. ISBN 978-87-975307-0-2       348 
 

and shown in a diagram:

 

 

2. 

From the rectangular form (vector form) we can find modulus 

(length) and argument (angle with +x-axis) using well known 

ordinary calculation: 

a =  3 + 4I   modulus:   (32 + 42)½  = 5  (Pythagoras) 

  and argument:   tan-1 ( 
4

3
 )  ≈  53,1° 

i.e.  (mod a, arg a)  =  (5, 53.1°) 

Continues 
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and 

b  =  -2 + 5I    has modulus:   ((-2)2 + 52)½  ≈ 5.39 

     and argument:   90° + tan-1 ( 
2

5
 )  ≈  111.8° 

     i.e.  (mod b, arg b)  =  (5.39, 111.8°) 

 

3. 

We can also find modulus and argument 

a · b  =  -26 + 7·I  =>   modulus  =  ((-26)2 + 72)½  ≈  26.9 

  argument  =  90° + tan-1 ( 
26

7
 )  ≈  164.9° 

  i.e.  (mod, arg)  =  (26.9, 164.9°) 

𝑎

b
  ≈  0,48 - 0,79·I  => modulus  =  (0.482 + (-0.79)2)½  ≈  0.928 

  argument  =  tan-1 ( 
−0.79

0.48
 )  ≈  -58.7° 

  i.e.  (mod, arg)  =  (0.928, -58.7°) 

 

We see that the calculated modulus and argument complies with 

the diagram. 

 

Calculation with complex numbers in the polar form 

Sum and difference of two complex numbers is as for the 

rectangular form, while product and division instead may be done 

in the polar form which is quicker: 
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Now we present some calculation rules that are easy to use but heavy to 

prove. The proof is shown in the chapter ”Rarely used proofs and 

calculations”: 

 

When we multiply two complex numbers in the polar form, we 

have:  

(mod a , arg Ɵ) · (mod b , arg φ)  =  (|a|     Ɵ) · (|b|     φ)  =   

|a·b|     (Ɵ+φ) 

so we multiply the modulus (the magnitudes) and add the 

arguments (the angles). 

 

When we divide two complex numbers in the polar form, we 

have: 

(mod a ,   arg Ɵ)

 (mod b ,   arg φ)
  =  

|a|      Ɵ

|b|      φ 
  =  | 

𝑎

𝑏
 |     (Ɵ-φ) 

so we divide the modulus (the magnitudes) and subtract the 

arguments (the angles). 

 

Example 1 

Two complex numbers are   

(mod, arg) = (5, 
𝜋

4
)   and   (mod, arg) = (3, 

𝜋

2
)    

We want the product (the two complex numbers multiplied) written polar: 

 modulus = 5·3 = 15 argument = 
𝜋

4
+  

𝜋

2
=  

3𝜋

4
 

Answer: (mod, arg) = (15, 
3𝜋

4
)    or shorter        15     

3𝜋

4
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Regardless of the way we write it (the notation) we multiply the 

modulus and add the arguments. 

 

2. 

And then we want  (5, 
𝜋

4
)  divided by  (3, 

𝜋

2
)  written polar:  

 modulus = 
5

3
  argument = 

𝜋

4
−

𝜋

2
= - 

𝜋

4
 

Answer: (mod, arg) = ( 
5

3
 , - 

𝜋

4
 ) or short 

5

3
      - 

𝜋

4
 

Regardless of the way we write it (the notation) we divide the 

modulus and subtract the arguments. 

---------- 

This way of calculating is similar to what we do with exponential 

functions. Therefore, we may use the exponential function too, 

when we multiply and divide: 

 

Calculation with complex numbers in the exponential form 

Sum and difference of two complex numbers is as for the 

rectangular form, while product and division instead may be done 

in the exponential form which is used within some industries: 

For the polar form, we have just seen, that a product is found by 

multiplying the modulus (the magnitudes) and adding the 

arguments (the angles), - while in division we divide the modulus 

and subtract the arguments. That way of calculating fits well with 

the exponential function: 

 

f(x) = b · akx which here becomes z = |z| ·eIƟ 
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(Many tables use z as the complex number, especially in the exponential 

form). 

z is now our complex number, which consists of modulus |z| (the 

magnitude) and the argument Ɵ (the angle), which is inserted in the 

exponential number eIƟ (with I for Imaginary).  

The examples show how we can use this: 

 

Example 1 

Two complex numbers (the same as before) are give as   

(mod a, arg a) = (5, 
𝜋

4
)   and   (mod b, arg b) = (3, 

𝜋

2
)    

We want the product (the two complex numbers multiplied) computed 

using the exponential formula: 

z = |z| ·eIƟ   

Here   a = 5 · 𝑒𝐼·
𝜋

4   and b = 3 · 𝑒𝐼·
𝜋

2       => 

a · b  =  (5 · 𝑒𝐼·
𝜋

4) · (3 · 𝑒𝐼·
𝜋

2) = 15 · 𝑒𝐼·
𝜋

4
 + 𝐼·

𝜋

2  = 15 · 𝑒𝐼·
3𝜋

4  

We see that the modulus is 15 and the argument is  
3𝜋

4
 

in short: (mod, arg) = (15, 
3𝜋

4
)    or very short   15      

3𝜋

4
  

Same answer as for the polar form. Of course. 

 

2. 

Two complex numbers are given as   

(mod a, arg a)  = (5, 
𝜋

4
)   and   (mod b, arg b)  = (3, 

𝜋

2
)    
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We want to divide according to the exponential formula: 

z = |z| ·eIƟ   

Here   a = 5 · 𝑒𝐼·
𝜋

4        and b = 3 · 𝑒𝐼·
𝜋

2       => 

a

b
  =  

(5 · 𝑒
𝐼·

𝜋
4) 

(3 · 𝑒
𝐼·

𝜋
2)

  =  
5

3
 ·  𝑒𝐼·

𝜋

4  
 − 𝐼·

𝜋

2   =  
5

3
 ·  𝑒  𝐼·( − 

𝜋

4
 )
 

We see that the modulus is  
5

3
  and the argument is − 

𝜋

4
 

in short: (mod, arg) = ( 
5

3
 , − 

𝜋

4
 )   or very short   

5

3
      − 

𝜋

4
  

Same answer as for the polar form. Of course. 

 

Summary 

Complex numbers are not common but they may be used as a 

mathematical tool within electronics, advanced description of 

flowing liquids, etc. 

The rectangular form can be used in all four basic arithmetic 

operations.  

The polar form is quick when multiplying or dividing.   

The exponential form is used in some industries for multiplication 

and division.  

---------- 

Example 

We will finish by continuing an earlier example and have a survey 

of the three methods: 
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Two complex numbers in the rectangular form: 

a =  3 + 4I  and  b  =  -2 + 5I 

Sum a + b  =  (3 + 4I) + (-2 + 5I)  =  1 + 9·I 

Difference a - b  =  (3 + 4I) - (-2 + 5I)  =  5 - I 

Product a · b  =  (3 + 4I) · (-2 + 5I)  =  -26 + 7·I 

Division  
𝑎

b
  =  

3 + 4I

−2 + 5I
 ≈  0,483 −  0,793 · I  

ǀaǀ =  (32 + 42)½  = 5  tan-1( 
4

3
 )  ≈  53,1° 

ǀbǀ =  ((-2)2 + 52)½   ≈  5.39 90° + tan-1( 
2

5
 )  ≈  111,8°  

Both arguments (angles) are relative to the positive direction of the 

first axis. 

The complex numbers a and b are shown as vectors in the 

diagram, - which we show again: 
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Two complex numbers in the polar form: 

The calculation of modulus and argument for the rectangular form 

are now used in the polar form: 

a  ≈  5      53.1° and b  ≈ 5.39      111.8° 

We cannot add or subtract in the polar form, but we can multiply 

and divide: 

a · b  ≈  5 · 5.39       (53.1° + 111.8°)  ≈  26.9       164.9° 

a

b
  ≈  

5

5.39
        (53.1° - 111.8°)  ≈  0.929      -58.7° 

-58.7° may also be written +301.3° 

It is seen that both comply with the earlier calculations as well as 

with the figure. 

continues 
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Two complex numbers in the exponential form 

The calculations of modulus and argument for the rectangular 

form are now used in the exponential form: 

a  ≈  5      53.1° and b  ≈ 5.39      111.8° 

yet, in the exponential form it is common to use radians: 

a  ≈  5      0.927 and b  ≈ 5.39      1.95 

We cannot add or subtract in the exponential form, but we can 

multiply and divide: 

a·b  ≈  (5 · 𝑒𝐼·0.927) · (5.39 · 𝑒𝐼·1.95)  ≈  26.95 · 𝑒𝐼·0.927 + 𝐼·1.95              

       a·b  ≈  26.95 · 𝑒𝐼·2.88 

We see that modulus is 26.95 and argument is 2.88 

Answer:     (mod, arg) = (26.95, 2.88)     or short       26.95      2.88 

 

a

b
  ≈  

5 · 𝑒𝐼·0.927 

5.39 · 𝑒𝐼·1.95
  ≈  0.929 · 𝑒𝐼·0.927 − 𝐼·1.95   ≈  0.928 · 𝑒𝐼·(− 1.02)        

We see that modulus is 0.928 and argument is  −1.02 

Answer:   (mod, arg) = (0.929, −1.02)    or short   26.95      - 1.02 

-1.02 rad.  can also be written  +5.26 rad. 
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Brief on set theory 

The set theory is only to be mentioned briefly. In part because it is 

an earlier acquired part of mathematics, and in part because most 

tables present the signs of the set theory with explanatory 

sketches.   

Here, we emphasize: 

The empty quantity (the empty set, nothing) is written   Ø     

The solution set is written   {-,-,-,…}  or by using a letter which is 

different in various countries. 

ϵ means ”belongs to” or “is an element of the set”. 

˄ means and. 

˅ means or. 

 

Examples 

If, in a problem, we are informed that the solution must belong to 

the real numbers, it may be written as  x ϵ R 

If, in a solve, we reach: no solution  we also may write  the 

solution is the empty quantity, Ø 

If, in a problem, we solve to get a domain for the function f in the 

interval  ]-50; 0]  we may write:                                 

The domain of f is ]-50; 0]   or brief   Dm(f) = ]-50; 0] 

If we want to display that x belongs to the interval  ]-50; 0]  , we 

may write  x ϵ ]-50; 0]   
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Rarely used proofs and calculations 

Proof of Pythagoras theorem 

 

Two squares are shown in the diagram.  

The big has the area (a + b)2   

The small has the area c2 

The area of the big square equals the area of the small square plus 

the areas of the four triangles: 

(a + b)2  =  c2 + 4 · 
1

2
 ·a·b    

a2 + b2 + 2ab  =  c2 + 2ab    

a2 + b2  =  c2 

Hence we have proved the probably most common mathematical 

theorem. 
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Proof of factorization of a second degree polynomium 

ax2 + bx + c  =  a(x – root1)(x – root2) 

We prove by calculating from the right side (the resolve) back to 

the left side (the starting point), knowing that:  

𝑟𝑜𝑜𝑡1 =
−𝑏+√𝑑

2𝑎
     and   𝑟𝑜𝑜𝑡2 =

−𝑏−√𝑑

2𝑎
  

which is inserted to the right:  

 𝑎 (𝑥 −
−𝑏+√d

2𝑎
) (𝑥 −

−𝑏−√d

2𝑎
) = signs arranged 

 𝑎 (𝑥 +
𝑏−√d

2𝑎
) (𝑥 +

𝑏+√d

2𝑎
) = multiplication 

 𝑎 (𝑥2 + 𝑥
𝑏+√d

2𝑎
+ 𝑥

𝑏−√d

2𝑎
+

𝑏2−d

4𝑎2 ) = common denominator 

 𝑎 (
4𝑎2𝑥2+2𝑎𝑥𝑏+2𝑎𝑥√d+2𝑎𝑥𝑏−2𝑎𝑥√d+𝑏2−𝑑

4𝑎2 ) = 

 𝑎 (
4𝑎2𝑥2+4𝑎𝑥𝑏+𝑏2−(𝑏2−4𝑎𝑐)

4𝑎2 ) = shortening  

 𝑎 (𝑥2 +
𝑏𝑥

𝑎
+

𝑐

a
)  = multiplication 

 𝑎𝑥2 + 𝑏𝑥 + c   which is the left side  

Hence proven that: 

 𝑎𝑥2 + 𝑏𝑥 + c =  𝑎(𝑥 – 𝑟𝑜𝑜𝑡1)(𝑥 – 𝑟𝑜𝑜𝑡2) 

 

There is also proof of factorization of higher polynomials, but we 

stop here. 
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Division of polynomials 

We can divide a polynomial by another polynomial using a 

technique similar to ordinary division - but more complicated. The 

technique is seen in this example: 

 

Example 1 

 𝑥
4−2𝑥3−3𝑥2+12𝑥−18

𝑥2−6
  calculates this way:  

 

 𝑥2 − 6 𝑥4 − 2𝑥3 − 3𝑥2 + 12𝑥 − 18  

 

First we focus on  x4  divided by  x2 . This gives  x2  which is 

written to the right. Then we multiply  x2  by  (x2 - 6)  . That gives  

x4 – 6x2   which is written in the next line: 

 𝑥2 − 6 𝑥4 − 2𝑥3 − 3𝑥2 + 12𝑥 − 18 𝑥2 

 𝑥4              − 6𝑥2 

 

Then we say upper minus lower and divide  -2x3  by  x2  . This 

gives  -2x  which is written in the resolve to the right. Then we 

multiply   -2x  by  (x2 – 6)  and write the answer in the next line – 

followed by upper minus lower: 

 𝑥2 − 6 𝑥4 − 2𝑥3 − 3𝑥2 + 12𝑥 − 18 𝑥2 − 2𝑥 

 𝑥4              − 6𝑥2 

        −2𝑥3 + 3𝑥2 + 12𝑥 − 18 

        −2𝑥3              + 12𝑥 
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                     3𝑥2              − 18 

We divide  3x2  by  x2 . This gives  3  which is written in the 

resolve to the right. Then we multiply  3  by  (x2 – 6)  and write 

the answer in the next line: 

 𝑥2 − 6 𝑥4 − 2𝑥3 − 3𝑥2 + 12𝑥 − 18 𝑥2 − 2𝑥 + 3 

 𝑥4              − 6𝑥2 

        −2𝑥3 + 3𝑥2 + 12𝑥 − 18 

        −2𝑥3              + 12𝑥 

                     3𝑥2              − 18 

    3𝑥2              − 18 

    0                       0 

Upper minus lower gives  0  and we are done. It added up.  

The resolve is  𝑥2 − 2𝑥 + 3 

 

Example 2 

Same technique if it doesn't add up. Then we get a remainder: 

 
𝑥4−2𝑥3−3𝑥2+12𝑥−1𝟕

𝑥2−6
  which calculates similarly:  
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 𝑥2 − 6 𝑥4 − 2𝑥3 − 3𝑥2 + 12𝑥 − 17 𝑥2 − 2𝑥 + 3 

 𝑥4              − 6𝑥2 

        −2𝑥3 + 3𝑥2 + 12𝑥 − 17 

        −2𝑥3              + 12𝑥 

                       3𝑥2            −17 

     3𝑥2            −18 

           1 

1 is the remainder which also must be divided by  (x2 – 2x). 

Combined resolve 𝑥2 − 2𝑥 + 3 + 
1

𝑥2−6
 

---------- 

We rarely need division of polynomials, and if we do, we will 

often use CAS. Yet, not all CAS is capable, especially if it does 

not add up, then we must do it manually. 
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Showing the formulas for Permutation and Combination  

For Permutation we use example 3 from the chapter on 

Probability: 

3. 

A foreman and deputy foreman and alternate must be elected in a 

board with 7 members. The one first elected becomes foreman, the 

next becomes deputy foreman, and the third becomes alternate. In 

how many ways can the 3 people be elected? 

 

Since the elected is not put back into the pool, the case is any order, without 

repetition.  

There are 7 possibilities of selecting the first, 6 possibilities of selecting the 

next, and 5 possibilities of selecting the third and last.  

The case is ”Both, and” i.e. multiplication:   7·6·5 = 210 possibilities 

Since the selection is not random all possibilities will be different, and there 

are 210 possibilities.   

Now we want a formula including the 3 selected as well as the 7 members of 

the pool/population, since this is our introductory information.  

We choose to multiply the number of possibilities  7·6·5  with  4·3·2·1  

which is allowed if we also divide by  4·3·2·1. That is: 

 
7·6·5·4·3·2·1

4·3·2·1
=

7!

4!
=

7!

(7−3)!
=

n!

(n−r)!
= 𝑃 hereby the formula is shown 

Thus we have the number in the pool/population (here the number of 

members 7) which we call n. And we have the number selected  (here 3) 

which we call r.  
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For Combination we use example 4 from the chapter on 

Probability: 

4. 

A foreman and deputy foreman and alternate must be elected in a 

board with 7 members. The election will show who of the 3 

people are having the 3 positions – regardless of which position. 

The decision amongst the 3 is postponed until later. How many 

possibilities are there for selection of the 3 people? 

Here the order does not matter, and the one selected is not put back into the 

pool. Thus the case is no order, without repetition. 

There are 7 possibilities of selecting the first, 6 possibilities of selecting the 

next, and 5 possibilities of selecting the third and last.  

The case is ”Both, and” i.e. multiplication:   7·6·5 = 210 possibilities 

Since the selection is random some possibilities will be alike. How many is 

that? Let us name the people:   

Ann, Ben, Clara, Dan, Ellie, Fred  

Then     

Ann, Ben, Clara = Ben, Clara, Ann = Clara, Ben, Ann 

i.e. three equal selections. 

Ben, Clara, Dan   will also give three equals. 

Clara, Dan, Ellie   will also give three equals. 

Dan, Ellie, Fred   will also give three equals.  

Ellie, Fred, Ann   will also give three equals. 

Fred, Ann, Ben   will also give three equals. 

So, 18 ways are actually only 6 possibilities. Let us call them 6 “packages”.  

Or put in another way: The 3 people may swap in  6 = 3·2·1 ways which 

renders: 
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7·6·5

3·2·1
= 35  𝑟𝑒𝑎𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

We now prolong this fraction by  4 · 3 · 2 · 1  in numerator and denominator 

and built in the size of the population (here 7) which we call n - and we also 

built in the number of “packages” (here 6 = 3!) which we call r 

 
7·6·5·4·3·2·1

3·2·1·4·3·2·1
=

7!

3!·4!
=

7!

3!·(7−3)!
=

𝑛!

r!·(n−r)!
= 𝐾       hereby the formula is shown. 
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Proof for product and division of complex numbers in the polar 

and the exponential form 

First, we need to derive some formulas on conversion of expressions 

including sine and cosine. There are many of them. Here we will use the four 

addition formulas. We call the angles Ɵ and φ. The proof is valid for angles 

measured in both degrees and radians. Here we use radians: 

 

Point P has the angle φ with the positive part of the first axis. 

Point Q has the angle Ɵ with the positive part of the second axis. 

Angle Ɵ-φ is between the two angle legs. 

Angle Ɵ+φ is from the +x direction to the arrow shown. 

The four addition formulas are: 

1. cos(Ɵ+φ)  =  cos Ɵ·cos φ - sin Ɵ·sin φ 

2. cos(Ɵ-φ)  =  cos Ɵ·cos φ + sin Ɵ·sin φ 

3. sin(Ɵ+φ)  =  sin Ɵ·cos φ + sin φ·cos Ɵ  

4. sin(Ɵ-φ)  =  sin Ɵ·cos φ - sin φ·cos Ɵ 

 

Shown in a 

unit circle 
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No.2  is proved by one of the formulas for an angle between two vectors: 

cos v  =   
𝐚·𝐛

ǀ𝐚ǀ ǀ𝐛ǀ
   => here 

cos(Ɵ-φ)  =   
𝐎𝐐·𝐎𝐏

ǀ𝐎𝐐ǀ ǀ𝐎𝐏ǀ
  =  

(cos Ɵ
sin Ɵ)·(

cos 𝜑
sin 𝜑

)

1·1
  =  cos Ɵ·cos φ + sin Ɵ·sin φ 

 

No.1  is proved by rearranging no.2 

cos(Ɵ+φ)  =  cos(Ɵ-(-φ))  =  
(

cos( Ɵ)
sin( Ɵ)

)·(
cos(−𝜑)
sin(−𝜑)

)

1·1
  =  cos Ɵ·cos(-φ) + sin Ɵ·sin(-φ)   

and since   cos(-φ) = cos φ   and   sin(-φ) = -sin φ   (see the unit circle), we have 

cos(Ɵ+φ)  =  cos Ɵ·cos φ - sin Ɵ·sin φ 

 

No.4  is proved by the other formula for an angle between two vectors: 

sin v  =  
det(𝐚,𝐛)

ǀ𝐚ǀ ·  ǀ𝐛ǀ
  => here 

sin(Ɵ-φ)  =  
det(𝐎𝐏,𝐎𝐐)

ǀ𝐎𝐏ǀ ·  ǀ𝐎𝐐ǀ
  =  

(
cos φ   cos Ɵ
sin φ   sin Ɵ

)

1·1
  =  cos φ·sin Ɵ - sin φ·cos Ɵ 

 

No.3  is proved by rearranging no.4 

sin(Ɵ+φ)  =  sin(Ɵ-(-φ))  =  
det(𝐎𝐏,𝐎𝐐)

ǀ𝐎𝐏ǀ ·  ǀ𝐎𝐐ǀ
  =  

(
cos (−φ)   cos Ɵ
sin(−φ)    sin Ɵ

)

1·1
  =   

cos(-φ)·sin Ɵ - sin(-φ)·cos Ɵ 

and since   cos(-φ) = cos φ   and   sin(-φ) = -sin φ   (see the unit circle), we have 

sin(Ɵ+φ)  =  cos φ·sin Ɵ + sin φ·cos Ɵ 

---------- 

The next point is about notation. 

Our complex number  z  may be written as a vector  
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z  =  z1 + I·z2  or z  =  ǀzǀ·(cos ϴ + I·sin ϴ) 

(Both equations say that our complex number has a horizontal part + a vertical, which is:      

a real part + an Imaginary part) 

Below we will get to the form  z  =  ǀzǀ·(cos ϴ + I·sin ϴ)  

which will be written in the polar form. 

---------- 

Now we are ready for the next step in the proof of product and division of 

complex numbers in the polar form: 

Product: (mod.a , arg.Ɵ) · (mod.b , arg.φ)  =  |a·b|     (Ɵ+φ) 

Proof: (mod.a , arg.Ɵ) · (mod.b , arg.φ) =  a(cos Ɵ + I·sin Ɵ) · b(cos φ + I·sin φ  = 

ab (cos Ɵ·cos φ + cos Ɵ·i·sin φ + I·sin Ɵ·cos φ + I·sin Ɵ·I·sin φ)     = 

ab ((cos Ɵ·cos φ - sin Ɵ·sin φ) + I(cos Ɵ·sin φ + sin Ɵ·cos φ)) 

And by using the addition formulas no.1 and no.3             => 

ab (cos(Ɵ+φ) + I·sin(Ɵ+φ))      

In the parenthesis we have the angles added, and the coordinates split in a 

real and an imaginary part. It may be written this way:  

(mod.a , arg.Ɵ) · (mod.b , arg.φ)  =  |a·b|     (Ɵ+φ) 

We multiply the moduli (the magnitudes) and sum the arguments (the 

angles). The notation shows that we are calculating polar. 

 

Division:  
(mod.a ,   arg.Ɵ)

 (mod.b ,   arg.φ)
 = | 

𝑎

𝑏
 |    (Ɵ-φ) 

Proof: 
(mod.a ,   arg.Ɵ)

 (mod.b ,   arg.φ)
  =  

a(cos Ɵ + I·sin Ɵ)

b(cos φ +I·sin φ)
  prolonged          = 

a(cos Ɵ + I·sin Ɵ)·(cos φ− I·sin φ)

b(cos φ + I·sin φ)·(cos φ −I·sin φ)
 multiplied          = 

a(cos Ɵ·cos φ − cos Ɵ·I·sin φ + I·sin Ɵ·cos φ + sin Ɵ·sin φ)

b((cos 𝜑)2− (cos 𝜑·I·sin φ) + I·sin φ·cos φ  + (sin φ)2)
        arranged     = 
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a(cos Ɵ·cos φ + sin Ɵ·sin φ)+ I(sin Ɵ·cos φ − cos Ɵ·sin φ)

b((cos φ)2 + (sin φ)2+ I(sin φ·cos φ − cos 𝜑·sin φ))
              = 

In the first two terms of the numerator we use addition formula no.2 – and in 

the last two terms we use no.4. In the first two terms of the denominator we 

use the basic relationship and the last two terms give zero: 

 
a(cos (Ɵ−φ)+ I·sin (Ɵ−φ))

b(1+0)
   =  

𝑎

𝑏
 (cos(Ɵ-φ) + I·sin(Ɵ-φ))  

which is written    

(mod.a ,   arg.Ɵ)

 (mod.b ,   arg.φ)
 =  | 

𝑎

𝑏
 |     (Ɵ-φ) 

We divide the moduli (the magnitudes) and subtract the arguments (the 

angles). The notation shows that we are calculating polar. 

---------- 

Conversion from polar to exponential form was shown in the chapter on 

complex numbers. Euler put it into a formula by simply equaling one of the 

vector expressions to the exponential function. Put in another way: he defined 

the equation: 

z  =  ǀzǀ·(cos ϴ + I·sin ϴ)  =  z · eI·ϴ  
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